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GLOSSARY OF STATISTICAL SYMBOLS


B = Number of bootstrap iterations 

Ho = Null hypothesis 

n = Bootstrap sample size 

N = Population size 

rb = Correlation computed on bootstrap sample 

r	xy = Sample estimate of ρ 
rc = Estimate of ρ corrected for restriction in range on X 

r ′ = Estimate of ρ derived from the range - restricted samplexy 

RY .X1 = Estimate of regression of X1 on Y 

RY . X1X 2 = Estimate of regression of X1 and X2 on Y 

ρ = Population or" true"Pearson product - moment correlation 

SE = Standard error of the correlationr 

σ = Standard deviation of a score in sample 
2sr = Asymptotic variance of ρ


sx = Standard deviation of X in the population


s′ x = Standard deviation of X in the range - restricted sample


tα / 2 = Critical value of t in two - tailed test at the desired confidence level


X = Predictor score


X = Mean predictor score


Y = Criterion score


Y = Mean criterion score
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GUIDELINES FOR BOOTSTRAPPING VALIDITY COEFFICIENTS


IN ATCS SELECTION RESEARCH


INTRODUCTION 

The Air Traffic Control Specialist (ATCS) occu­
pation is the single largest (about 17,000 persons) 
and most publicly visible occupational group in the 
Federal Aviation Administration (FAA). Air traffic 
controllers are at the heart of a web of radars, comput­
ers, and communication facilities that comprise an 
increasingly complex and busy air transportation 
system. Competitive examinations have been used to 
determine entry into the occupation since 1964 
(Brokaw, 1984). Validation of these competitive 
examinations has traditionally relied on concurrent, 
criterion-related designs with substantial samples of 
incumbent controllers. For example, about 800 in­
cumbent controllers were sampled from 15 major 
cities in an early 1972 validation study. A subsequent 
longitudinal study drew data from over 2,300 con-
trollers (Sells, 1984). The written test battery used 
between 1981 and 1992 for the selection of control­
lers was validated on samples ranging in size from 900 
to over 3,000 (Boone, 1979). More recently, samples 
of 438 controller trainees and 296 incumbent con-
trollers were used in predictive and concurrent crite­
rion-related validation studies of a new generation of 
computer-administered tests for the occupation 
(Broach & Brecht-Clark, 1993). 

Use of such large samples in validation studies 
imposes significant operational and financial bur-
dens on the agency. For example, rearrangement of 
work schedules in field facilities is often required to 
allow controllers to participate in the studies and to 
ensure appropriate coverage of control positions. 
Consequently, overtime costs may be incurred by the 
facility to ensure adequate staffing during data col­
lection efforts. Other incurred costs include (1) direct 
travel costs to bring the controller to the test site or the 
test to the controller, and (2) salary costs for the partici­
pating controllers. More efficient designs that require 
fewer controllers for selection test validation research 
are needed by the FAA to reduce the resource costs 
associated with validation of controller selection tests. 

One possible approach is to maximize the infor­
mation gained from a single sample of controllers 
using innovative, emerging statistical techniques, 
such as bootstrapping, to estimate the population 
validity coefficient for new selection tests. The fun­
damental task in criterion-related selection test vali­
dation is to make a probability-based inference about 
the magnitude of the “true” population validity coef­
ficient, ρ, for a predictor, on the basis of a sample 
statistic, rxy, computed on a sample of applicants or 
incumbents. Bootstrapping estimates the sampling 
distribution of a statistic by iteratively resampling 
cases, with replacement, from a set of observed data, 
and computing the sample statistic. Confidence in­
tervals about the sample statistic can then be con­
structed, providing an empirical basis for inferential 
statements about the likely magnitude of the statistic. 
This approach allows for use of smaller samples for 
estimation of the underlying population parameter. 
Application of bootstrapping to estimation of valid­
ity coefficients might allow the FAA to user smaller 
samples in validation studies, thereby reducing re-
source costs. 

Bootstrapping has been applied to the estimation 
of validity coefficients in methodological studies 
(Cooil, Winer, & Rados, 1987; Kromery & Hines, 
1995). Other methodological studies have investi­
gated the relationship of restriction in range and 
sample size to the accuracy of the confidence interval 
about a bootstrapped statistic (Allen & Dunbar, 
1990; Mendoza, Hart, & Powell, 1991). However, 
bootstrapped estimates of criterion-related validity 
coefficients have not appeared in applied studies of 
personnel selection tests. Moreover, no guidelines or 
tables relating effect size (e.g., the magnitude of the 
r

xy
), inferential errors (e.g., Type I and II errors), 

statistical power, and sample size have appeared for 
use by practitioners in designing selection test crite­
rion-related validation studies with bootstrapping in 
mind. The purpose of this study was to develop 

1




empirically-based guidelines and recommendations 
for estimating sample sizes required to attain reason-
able and stable bootstrapped estimates of validity 
coefficients in concurrent, criterion-related valida­
tion of ATCS aptitude tests under conditions of 
explicit and incidental restriction in range. 

TECHNICAL BACKGROUND 

Traditional parametric estimation of sample 
size requirements 

Correlation coefficient. The Pearson product 
moment correlation coefficient, ρ, reflects the strength 
of the linear relationship between two variables 
(Galton, 1888). A sample estimate of ρ is derived 
using the following formula: 

� (X − X)� (Y −Y) 
r = xy 

� −− 2 2 ) () ( YYXX � (Equation 1) 

Where 
rxy = sample estimate of ρ 

X = predictor score 

X = mean predictor score 

Y = criterion score 

Y = mean criterion score 

Brogden (1949) demonstrated 50 years ago that 
the economic utility of a personnel selection system 
is a direct function of the strength of the predictor-
criterion (X-Y) relationship. More recently, Russell, 
Colella, and Bobko (1993) found that, if r increases xy 

by a factor of 2, gross value-added to the organization 
doubles. Hence, an accurate sample estimate r of the xy 

population parameter ρ provides key insight into 
how well a personnel selection system is working and 
its utility to the organization. 

However, this begs the question, “How large does 
the sample have to be to ensure r is an ‘accurate’ 

xy 

estimate of ρ?” Traditional means of answering this 
question use parametric assumptions about distribu­
tional characteristics of X and Y. For example, Fisher 
(1915, 1970, p. 194) described the asymptotic vari-

2ance of a correlation (sr )  between two bivariate 
normally distributed variables X and Y as: 

2 2 

s2 ≅ (1- ρ )
r N (Equation 2) 

Where 
N = sample size. 
A minor variation of this formula yields the esti­

mate of standard error (SEr )  used in the denomina­
tor of t-tests of H : r

xy
 = 0, or:

o 

SE = r 
(Equation 3) 2 

)1 ( 2 

− 
− 

N

rxy

The estimate for standard error of r
xy
 permits 

derivation of confidence intervals. The confidence 
interval (CI) is defined as 

CI = rxy ± t
a/2

(SEr) (Equation 4) 

Where 
tα/2

 = the critical value of t in a two-tailed test at the 
desired confidence level (α = .10, t = 1.645 for the 
90% confidence interval, or α = .05, t = 1.96 for the 
95% confidence interval). 

For example, the SE
r
 would be .07 for a sample of 

N = 200 and an ρ of .20 between two bivariate 
xy 

normally distributed variables. One could be 90% 
sure the true population parameter ρ will fall in the 
interval .20 ± 1.645(.07), or .08 to .32. Similarly, one 
would be 95% sure the true population ρ will fall in 
the interval .20 ± 1.96(0.20), or .06 to .34. In this 
example, the 90% and 95% confidence intervals do 
not include zero, and one could reasonably infer the 
population correlation coefficient was not zero. 

Assume the organization knows in advance that 
minimally acceptable criterion-related validity must 
be rxy = .20 for a new personnel selection test to add 
economic value. One could then work backwards to 
determine the minimum sample size needed to en-
sure zero does not fall in the confidence interval (e.g., 
the null hypothesis H

o
: ρ = 0 can be rejected at

xy 

p(type I error) < .10) if in fact ρ = .20. For example, 
the minimum sample size needed to detect r = .20 xy 

between two bivariate normal variables at p < .10 (2-
tailed) can be obtained by solving for N as follows: 

.20 = 1.645 
, or, N = 67 for a = .10 2 

) 20 .1( 2 

− 
− 
N

Note, the median sample size of criterion validity 
studies reported in the Journal of Applied Psychology 
and Personnel Psychology between 1965 and 1991 was 
N = 104 (Russell et al., 1994). 
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Restriction in range. However, the distribution of 
predictor scores is generally non-normal in concur-
rent, criterion-related validity studies due to range 
restriction, as the predictor has been used to select the 
incumbents. For example, applicants to the ATCS 
occupation competed under civil service rules on the 
basis of a composite of written aptitude test scores 
(Broach, 1998). The distribution of that composite 
score for 205,592 ATCS applicants (out of over 
400,000 since 1981) is presented in Figure 1. The 
distribution of that composite score for the 10,869 
applicants competitively selected into the FAA be-
tween 1986 and 1992 is illustrated in Figure 2. Both 
figures superimpose what a normal curve with the 
same mean and standard deviation as data contained 
in the graph would look like. Note both distributions 
are distinctly non-normal and negatively skewed; the 
distribution of applicant composite scores (Figure 1) 
evidences some degree of bi-modality. The correla­
tion between the composite score and subsequent 
performance in FAA Academy initial ATCS training 
for the 10,869 competitive entrants was r = .182. xy 

However, the “true” population validity (ρ) is likely 
to be much larger than .182 in the N = 205,592 
applicant population. 

Ghiselli (1964) derived a correction formula that 
yields a more accurate estimate of ρ, i.e., what would 
have been expected if predictor and criterion data had 
been available on all applicants (Bobko & Rieck, 
1980; Linn, Harnisch, & Dunbar, 1981). The for­
mula correcting rxy for direct range restriction is: 

� s �' r � x � xy� ' �
� sx �r = c 2 

' 
2 2 ' ' 1 ��

� 

� 
�� 
� 

� 
+− 

x 

x 
xyxy s

s 
rr

(Equation 5) 

Where 

rc = the estimate of ρ corrected for range restriction on X 
' rxy = theestimateof ρ derived from the range restricted sample 

' sx = thestandarddeviationof X in the range restricted sample 

Application of this formula to the correlation 
between ATCS aptitude composite score and FAA 
Academy performance of rxy = .182 yields: 

� 14.11� .182� � 
r = 

23 .1

02 .5
11.14

182.182.1
2 

2 2 
� 
� 

�
�
� 

� + − 

� 5.02 � = .512 = .42c

Assumptions about the underlying distributions 
of X and Y. While direct range restriction on the 
predictor X constitutes a known violation of bivariate 
normality that can be “corrected” for, the X and Y 
distributions may be non-normal for any one of a 
large number of other reasons. Highly skewed (e.g., 
Figure 1) or multi-modal distributions of the predic­
tor or criterion cause Fisher’s bivariate normality 
assumption to be violated. For example, Fisher’s 
formula assumes the sample was drawn from a single 
population characterized by a single value of ρ. Un­
fortunately, if the independent and dependent vari­
ables are distinctly non-normal, as appears to be the 
case in ATCS aptitude test scores, “tests . . . based on 
the large sample formula are often very deceptive” 
(Fisher, 1970, p. 195). 

Moreover, it is possible that ATCS applicants were 
drawn from multiple populations, each with its own 
unique value of ρ. For example, Russell and Dean 
(1997) reported evidence of multiple population 
values of ρ in a sample of N > 15,000 applicants hired 
using the General Aptitude Test Battery (GATB) 
over a 10-year period. ATCS applicants were re­
cruited from diverse demographic and geographic 
groups; it is possible that unique values of ρ might 
characterize the population of applicants from rural 
areas with just high school diplomas compared to the 
sub-population of applicants from large cities with 
college degrees. If applicants were drawn from multiple 
populations with unique ρ, using Fisher’s formula to 
estimate confidence intervals and the sample sizes 
required to attain them will be incorrect. 

sx = thestandarddeviationof X in the non - range restricted population 
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In sum, correction formulae can be derived when 
deviations from bivariate normality are well under-
stood, e.g., in the case of direct range restriction in 
the predictor. Unfortunately, when the distributional 
characteristics of X and Y are unknown, the underly­
ing distributional characteristics of r are also un­xy 

known, and Equation 2 cannot be used to estimate 
required sample size. 

Bootstrap Estimation Procedures 
Recently, Efron (1979) presented a new method of 

empirically estimating characteristics of population 
distributions from sample data, called bootstrapping. 
Bootstrapping estimates the sampling distribution of 
a statistic by iteratively resampling cases from a set of 
observed data. Basically, B “bootstrap” samples of 
size n are taken with replacement from the original 
sample of size N and saved to a file. An investigation 
using B = 1,000 bootstrap samples of size n will 
essentially be able to approximate the actual sampling 
distribution that would have been obtained if mul­
tiple independent samples of size N were drawn from 
the population. Bootstrapping is computationally 
time intensive, as the sample at hand is resampled 
with replacement many times to derive the distribu­
tion of the statistic of interest. 

There are many advantages to using the bootstrap 
technique. First, it is not restricted to the normality 
assumptions of parametric tests. The percentile 
bootstrapping method (Efron & Tibshirani, 1993, 
chapter 13) generates confidence intervals directly 
from the bootstrapped sampling distribution (e.g., if 
B = 1,000 bootstrap samples are taken, the bootstrap 
correlations (rb) representing the 5th and 95th percen­
tile points would fashion the lower and upper points 
of a 90% CI). Of interest in this application is 
graphical interpretation of rb frequency distributions 
(Efron & Tibshirani, 1993). Evidence of multi-
modality would suggest the presence of multiple sub-
populations in the sample, each with a unique ρ. 
Second, information concerning the form of the 
original sample is retained, with no loss of distribu­
tional information. Rasmussen (1987) noted such 
loss of information does occur when nonparametric 
techniques convert data to ranks, which is why 
Lunneborg (1985) described bootstrapping as falling 
between parametric and nonparametric procedures 
for making probabilistic inferences. 

The main disadvantage of the technique is that one 
must be confident the sample examined is indeed 
representative of the population from which it was 
drawn. Other than differences due to direct range 
restriction (which can be corrected for), this assump­
tion appears to be met for studies of controller selec­
tion due to the large sample sizes. Regardless, 
applications of parametric statistical estimation pro­
cedures effectively make the same assumption. For 
example, if the test statistic of interest falls in the 
critical region, the investigator rejects the null hy­
pothesis and proceeds to draw implications for theory 
and practice as if what is true in the sample is also true 
in the population. All inferential statistics must make 
the basic assumption that evidence drawn from the 
sample (e.g., rejection or lack of rejection of H

o
) 

generalizes to the population. 
An example. Rasmussen (1987) presented the fol­

lowing simple example to explain the bootstrap pro­
cedure. The computer initially is presented with a 
data set containing 10 graduate students’ first year 
grade point average (GPA) and Graduate Record 
Exam (GRE) scores. Then a bootstrap sample (B

1
) is 

randomly drawn with replacement from these 10 
observations, causing the possibility of some observa­
tions being represented more than once in the boot-
strap sample while other observations are not included. 
A single bootstrap sample may include the following 
cases: 5, 2, 8, 6, 2, 7, 9, 6, 1, and 2, resulting in a 
correlation of rb1 = .59. This procedure is repeated a 
large number of times (e.g., B = 1,000) and each rb is 
saved to a separate file. The bootstrap correlations (r

b
) 

are then rank ordered with the 50th and 950th 
correlations representing 90% confidence interval 
end points. The null hypothesis of ρ

GPA,GRE
 = 0 is 

tested by determining whether 0 falls within the 
confidence interval (Rasmussen, 1987). The mean 
value of r

b
 across all B = 1000 bootstrap samples 

would be the best estimate of ρGPA,GRE. 
Issues in bootstrapping. To determine the 

bootstrap’s appropriateness, studies have been con­
ducted examining the similarity in results between 
the bootstrap and traditional statistical approaches 
under conditions in which the parametric assump­
tions were met (e.g., Diaconis & Efron, 1983; Efron, 
1985, 1986; Lunneborg, 1985). These studies re­
sulted in bootstrap statistics (e.g., estimates of confi­
dence intervals) that were extremely close to those 
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generated from traditional parametric approaches. 
Bickel and Freedman (1981; Freedman, 1981) dem­
onstrated the bootstrap was asymptotically valid for 
many statistics (e.g., t and regression statistics). 

A number of issues remain unresolved in using 
bootstrapping to conduct hypothesis testing. Most of 
these issues revolve around the relative accuracy of 
parametric versus bootstrap procedures in estimating 
probability intervals at the extreme tails of known 
(i.e., normal) distributions. However, the percentile 
method of estimating confidence intervals, as de-
scribed by Efron and Tibshirani (1993), provides 
“good theoretical coverage properties as well as rea­
sonable stability in practice” (p. 169). Good “theo­
retical coverage” refers to confidence intervals that 1) 
accurately estimate the probability of the population 
parameter falling within the confidence interval and 
2) divide “coverage error” equally across the two tails. 

Hence, the percentile bootstrap method of esti­
mating confidence intervals might be used to esti­
mate the distributional characteristics of r under xy 

actual conditions faced by the FAA in the selection of 
air traffic controllers. In this study, bootstrap proce­
dures were applied to archival ATCS selection data to 
estimate sampling distributions for r obtained with xy 

B = 1,000 samples of n = 25, 50, 75, … to 200. Results 
are presented with and without correction for direct 
range restriction. 

METHOD 

Sample 
The Civil Aeromedical Institute provided archival 

ATCS written aptitude test scores for 205,592 ex­
aminations for the period 1981 to 1992. The Insti­
tute also provided test and criterion data for the 
10,869 persons competitively selected into the ATCS 
occupation from October 1985 through January 1992. 

Measures 
Predictor. The written ATCS aptitude test battery 

consisted of three tests: (a) the Multiplex Controller 
Aptitude Test (MCAT); (b) the Abstract Reasoning 
Test (ABSR); and (c) the Occupational Knowledge 
Test (OKT). The MCAT was a timed, 110-item 
paper-and-pencil civil service test (OPM test No. 
510) simulating activities required for control of air 
traffic. Multiple, parallel forms of these test were 
available (Lilienthal & Pettyjohn, 1981). Aircraft 

locations and direction of flight were indicated with 
graphic symbols on a simplified, simulated radar 
display (Figure 3). An accompanying table provided 
relevant information required to answer the item, 
including aircraft altitudes, speeds, and planned routes 
of flight. MCAT test items required examinees to 
identify situations resulting in conflicts between air-
craft, interpret tabular and graphical information , 
and to solve time, speed, and distance problems. The 
ABSR was a timed, multiple-choice, 50-item civil 
service examination (OPM test No. 157). To solve an 
item, examinees determined what relationships ex­
isted within sets of symbols or letters. The examinee 
then identified the next symbol or letter in the pro­
gression, or the element missing from the set. A 
sample ABSR item is presented in Figure 4. The OKT 
was a timed, multiple-choice 80-item job knowledge 
test that contained items related to seven knowledge 
domains relevant to aviation, generally, and to air 
traffic control phraseology and procedures, specifi­
cally. The OKT was developed as an alternative to 
self-reports of aviation and air traffic control experi­
ence. The OKT was found to be more predictive of 
performance in ATCS training than self-reports 
(Dailey & Pickrel, 1984; Lewis, 1978). 

The development of the written ATCS aptitude 
test battery has been extensively described elsewhere 
(Brokaw, 1984; Collins, Boone, & VanDeventer, 
1984; Manning, 1991; Sells, 1984; Sells, Dailey, & 
Pickrel, 1984). The test-retest correlation for the 
MCAT was estimated at .60 in a sample of 617 newly 
hired controllers (Rock, Dailey, Ozur, Boone, & 
Pickrel, 1982, p. 59). Parallel form reliability, as 
computed on the same sample, ranged from .42 to .89 
for various combinations of items (Rock et al., p. 
103). Lilienthal and Pettyjohn (1981) examined in­
ternal consistency and item difficulties for 10 ver­
sions of the MCAT. Cronbach’s alpha ranged from 
.63 to .93; the alphas for 7 of the 10 versions were 
greater than .80. In contrast, no item analyses, paral­
lel form, test-retest, or internal consistency estimates 
of the ABSR test have been reported. 

Weighted MCAT and ABSR raw scores were summed 
and transformed to a score with a mean of 70 and 
maximum of 100, known as the Transmuted Compos­
ite Score (TMC). No estimates for the reliability of this 
composite score have been reported. About half of all 
applicants were expected to score at or above the mean 
(Rock, Dailey, Ozur, Boone, & Pickrel, 1984). 
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Criterion. The criterion was performance in the 
FAA Academy initial ATCS training program, known 
as the ATCS Non-radar Screen (“the Screen”). Under 
the Uniform Guidelines for Employee Selection Proce­
dures (Equal Employment Opportunity Commis­
sion, 1978), training may be used as a criterion 
measure where success in training is “properly mea­
sured,” and the relevance of the training can be 
demonstrated through comparison of training con-
tent to critical or important job behaviors, or by 
showing that training measures are related to subse­
quent measures of job performance. The Screen was 
originally established in response to recommenda­
tions made by the U.S. Congress House Committee 
on Government Operations (U.S. Congress, 1976) 
to “...provide early and continued screening to insure 
(sic) the prompt elimination of unsuccessful trainees 
and relieve the regional facilities of much of this 
burden” (p. 13). The Screen was based upon a min­
iaturized training-testing-evaluation personnel selec­
tion model (Siegel, 1978, 1983; Siegel & Bergman, 
1975) in which individuals with no prior knowledge 
of an occupation are trained and then assessed for 
their potential to succeed in the job. Performance in 
the Screen has been shown to predict subsequent 
performance in radar based training one to two years 
after entry into the occupation (Broach & Manning, 
1994), as well as completion of the rigorous on-the-
job training sequence and certification as a qualified 
“full performance level” (FPL) controller (Broach, 
1998; Della Rocco, 1998; Della Rocco, Manning, & 
Wing, 1990; Manning, Della Rocco, & Bryant, 1989). 

Thirteen assessments of performance, including 
six classroom tests, observations of performance in 
six laboratory simulations of non-radar air traffic 
control, and a final written examination, were made 
during the Screen (Broach, Farmer, & Young, in 
review; Della Rocco, 1999; Della Rocco, Manning, 
& Wing, 1990). The final summed composite score 
(NLCOMP) was weighted 20% for the classroom 
tests, 60% for laboratory simulations, and 20% for 
the final examination. A minimum NLCOMP score 
of 70 was required to pass. The final composite score 
was the criterion measure in this study. 

Bootstrap procedures 
The SYSTAT7.01 statistical package, published 

by SPSS Inc., was used for all derivations (syntax files 
are available from the first author). Each bootstrap 

procedure reported below followed a four-step se­
quence to yield “percentile” confidence intervals, as 
described by Efron and Tibshirani (1993). 

Step1: Number of iterations. Decide how many 
bootstrap samples (B) to take. Evidence suggests 
bootstrap estimates of common statistics’ distribu­
tional characteristics tend to stablize when the num­
ber of bootstrap samples drawn approaches B = 200 
(Efron & Tibshirani, 1993, p. 52). However, point 
estimates of confidence interval percentiles (e.g., the 
5th and 95th percentiles) are subject to greater error 
in estimation. Efron and Tibshirani recommend ex­
tracting 500 to 1,000 bootstrap samples to minimize 
estimation error (1993, p. 252). Hence, to ensure 
accuracy, all bootstrap procedures reported here it­
eratively drew B = 1,000 bootstrap samples with 
replacement. 

Step 2: Number of sampled observations for 
bootstrap. Decide how many observations should be 
drawn in each of the B

1
 to B

1000
 bootstrap samples. 

Given the parametric estimate of sample size required 
in the current data for the sample stastistic r = .182 

xy 

to reject H
o
: ρ = 0 at α = .10 was N = 81 (as derived 

from Equation 3), eight independent bootstraps of n 
= 25 through n = 200 were performed. In other 
words, first, B = 1,000 samples of size n = 25 were 
drawn, with replacement, from the original sample of 
N = 10,869. Then B = 1,000 samples of size n = 50 
were drawn, with replacement, from the original 
sample, followed by B = 1,000 samples of size n = 75, 
B = 1,000 samples of size n = 100, and so forth until 
a total of eight bootstrap operations had been per-
formed for n = 25, 50, 75, …, 200. 

Step 3: Compute bootstrapped statistic. The 
TMC-NLCOMP Pearson product moment correla­
tion (r

b
) and TMC standard deviation were derived 

for each bootstrap sample (B
1 
to B

1000
) and saved to a 

file labeled TMC25. This procedure was repeated 
independently for n = 50, 75, 100, 125, 150, 175, and 
200, yielding additional output files labeled TMC50 
through TMC200. 

Step 4: Examine distribution of bootstrapped 
statistic. Correlations (r

b
) derived from each boot-

strap procedure were sorted and values correspond­
ing to the 5th, 50th, and 95th percentile identified. 
The frequency with which each rb value occured was 
then plotted graphically, with the 5th, 50th, and 95th 
percentile values labeled below the X-axis. 

6




Analyses 
Uncorrected correlations. Three analyses were 

performed to generate different distributions of r
b
 for 

each bootstrap sample size (n = 25, 50, … 200). A 
frequency distribution of r

b
 was plotted and the 5th, 

50th, and 95th percentile values for the simple, 
uncorrected TMC-NLCOMP correlation were de-
rived. For comparison purposes, the normal curve 
with a mean and standard deviation identical to that 
found in the r

b 
frequency distribution was superim­

posed. Basic sampling theory predicts that the inter­
val between the 5th and 95th percentile values of r

b 

will decrease as sample size increases. The smallest 
bootstrap sample size (n) with a 90% confidence 
interval that no longer contains 0 will approximate 
the minimum sample size (N) needed to ensure r = 

xy 

.182 will reject H
o
: ρ = 0 at α = .10. Computational 

time required for this procedure ranged from two 
hours (bootstrap n = 25) to 6 hours (bootstrap n  = 
200) on a 233 Mhz Intel Pentium® personal com­
puter. Graph A-1 in Appendix A portrays the fre­
quency distribution output for B = 1,000 bootstrap 
samples of size n = 25 for the simple, uncorrected 
TMC-NLCOMP correlation. Graphs A-2 through 
A-8 in Appendix A present the frequency distribu­
tions for r

b
 derived for B = 1,000 bootstrap samples of 

n = 50, 75, 100, 125, 150, 175, and 200, respectively. 
The logical flow of this analysis is illustrated in 
Figure 5. 

Correlations corrected for restriction in range. 
Second, Ghiselli’s (1964) correction formula for di­
rect range restriction was applied to each r

b
 within the 

TMC25, TMC50, … and TMC200 files. The TMC 
standard deviation (s’x) for each bootstrap sample was 
computed and saved to the file with each respective 
r

b
. Subsequently, each r

b
 was corrected using s’x de-

rived from the bootstrap sample from which it was 
drawn, and s

x
 = 14.11, derived from the N = 206,592 

applicant population. The corrected bootstrapped 
correlation coefficients (r

b
) were rank ordered and 

plotted, yielding a frequency distribution with the 
5th, 50th, and 95th percentile points indicated on 
the X-axis. The flow of this analysis is illustrated in 
Figure 6. Again, for purposes of comparison, a nor­
mal curve with a mean and standard deviation iden­
tical to that found in the corrected r

b 
frequency 

distribution was superimposed on the r
b
 frequency 

distribution. Graph B-1 in Appendix B is the result of 
this procedure applied to the B = 1,000 bootstrap 
samples of size n = 25. Graphs B-2 through B-8 in 

Appendix B present the frequency distributions for r
b 

corrected for restriction in range for B = 1,000 boot-
strap samples of n = 50, 75, 100, 125, 150, 175, and 
200, respectively. 

Correlations generated for bivariate normal popu- 
lation. Finally, using the SYSTAT7.01 random nor­
mal function, 1,000 r

b
 were generated from B = 1,000 

samples of n = 25 taken from a bivariate normal 
population with ρ = .182. The standard deviation 
was computed as σ = .1974, based on Equation 2. 
These bivariate normal bootstraped correlation coef­
ficients were rank ordered and plotted, yielding a 
frequency distribution with the 5th and 95th percen­
tile points indicated on the X-axis, as were the values 
ρ = .182 and σ = .1974 used to generate the data. 
Graph C-1 in Appendix C presents the result of this 
procedure. This procedure was repeated for samples 
of n = 50, 75, … 200, computing the standard 
deviation each time based on equation 2. The flow of 
this analysis is portrayed in Figure 7. Graphs C-2 
through C-8 in Appendix C present the frequency 
distributions for r

b
 derived for B = 1,000 bootstrap 

samples of n = 50, 75, 100, 125, 150, 175, and 200, 
respectively. 

In sum, the graphs in Appendix A capture the 
bootstrapped r

b
 frequency distribution for TMC­

NLCOMP correlations uncorrected for range re­
striction. The Appendix B graphs capture the 
bootstrapped r

b
 frequency distribution for TMC­

NLCOMP correlations corrected for range restric­
tion. Last, the graphs in Appendix C are what a 
bootstrapped r

b
 frequency distribution for TMC­

NLCOMP correlations is expected to look like if the 
applicant population was characterized by bivariate 
normal distribution of TMC and NLCOMP and 
ρTMC, NLCOMP = .182. Confidence interval end points 
for corrected and uncorrected bootstrap procedures 
are summarized in Table 1. 

RESULTS 

A number of inferences can be drawn from the 
graphs and their respective confidence intervals. First, 
and perhaps most obvious, visual interpretation sug­
gests that the distributional characteristics of r

b
 (cor­

rected or uncorrected for direct range restriction) are 
not what would be expected under conditions of 
bivariate normality — the “C” graphs differ mean­
ingfully from the “A” and “B” graphs. Hence, for the 
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90% confidence interval or a = .10, the estimated N 
= 81 sample size required to detect ρ = .182 derived 
under parametric assumptions is spurious. 

Second, examination of the confidence intervals 
summarized in Table 1 indicates N ≈ 175 or greater 
is required to ensure the 90% confidence interval 
does not contain 0 (i.e., H

o
: ρ = 0 will be rejected) in 

these archival data. The actual distributional charac­
teristics of these data, as revealed by the bootstrap 
procedure, suggest a larger sample (N ≥ 175) will be 
required to reject H

o
: ρ = 0 than would be required if 

the joint TMC-NLCOMP space was bivariate nor­
mal (N = 81). 

Third, given the relatively tight range of observed 
TMC values in the N = 10,896 competitively selected 
controllers, virtually no outliers were present. 
Bootstrapping procedures are most subject to estima­
tion error when the original sample contains infre­
quent, extreme outliers (Efron & Tibshirani, 1993); 
Figure 2 indicates this was not a problem in the 
current data. 

Fourth, the same cannot be said of TMC values in 
the original applicant pool, which suggest a small 
group of extremely low TMC values lie some distance 
from the rest of the observations. These outliers will 
inflate the non-range restricted standard deviation 
estimate (sx) in Ghiselli’s (1964) correction formula. 
This may have been due to labor pool “history ef­
fects” associated with the Professional Air Traffic 
Controller Organization (PATCO) strike of the early 
1980s. That is, there may have been a higher than 
usual frequency of low-ability, unsuccessful appli­
cants attracted by the publicity about the ATCS 
occupation following the strike. If the outliers were 
due to such a history effect, Ghiselli’s correction for 
range restriction may represent a spurious overcor­
rection when estimating ρ in future applicant pools 
that are not influenced by a similar history effect. 

Finally, noting that this last caveat holds for all 
inferences drawn from the current analyses —these 
results will generalize to future criterion validation 
efforts only to the extent that similar TMC-NLCOMP 
distributional characteristics and latent TMC­
NLCOMP relationships exist. 

Guidelines and Recommendations 
A number of recommendations can be drawn for 

future FAA efforts at estimating criterion validity. 
First, extremely large (1,000+) sample sizes are not 

required to yield accurate estimates of selection bat­
tery criterion validity. Results suggest samples in the 
range of N = 200-500 ought to provide whatever 
margin of error might be needed to ensure accurate 
estimation of ρ, i.e., to ensure 0 does not fall in the 
90% confidence interval. A number of additional 
recommendations and guidelines follow: 

1. Assumptions of bivariate normality in traditional 
parametric estimation procedures are not justified 
in the current data. Estimation of confidence 
intervals and tests of null hypotheses should be 
performed using the four-step bootstrap proce­
dure outlined above. Note that this recommenda­
tion may result in confidence intervals that are 
larger or smaller than those obtained from tra­
ditional parametric estimation for any given 
sample size. 

2. Corrections for range restriction did not substan­
tively influence whether the bootstrap estimated 
90% confidence interval contained 0. Future ap­
plications should continue to assess whether this 
holds true. Note, under parametric assumptions, 
the estimate of the standard deviation of r is: 

c 

This correction can then be used, again under 
parametric assumptions, to test H

o 
and derive 

confidence intervals for rc. Importantly, while 
SD(r)

c 
is larger than SD(r) under conditions of 

range restriction, SD(r
c
) does not increase relative 

to SD(r) as fast as r increases relative to r (Bobko,c 

1995). Hence, under parametric conditions the 
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investigator enjoys a “boost” in statistical power 
when testing H

o
: r

c
 = 0. Current results suggest 

this “boost” is not justified in the present data; the 
likelihood of 0 falling in the confidence interval 
seems to be about the same for both r and r . 

c 

3. Given the apparent absence of bivariate normality 
in the current data, tentative implications can also 
be drawn for tests of H : ρ = ρ ≠ 0 and of H

o
: R

Y.X1o o 

≥ RY.X1X2. Specifically, parametric tests of H
o
: ρ = 

ρ ≠ 0 require use of Fisher’s Z transformation. In 
o 

the presence of a constant effect size, the resultant 
Z test (Bobko, 1995, p. 54) literally requires 
doubl e the sample size to attain the same statisti­
cal power as a test of H

o
: ρ = 0. Again, the absence 

of bivariate normality suggested by the current 
results implies similar bootstrapping procedures 
should be used to assess whether the 90% confi­
dence intervals for ρ - ρ o and RY.X1X2 - RY.X1 

contain 0. 

Overall, these results indicate that accurate esti­
mation of validity coefficients by bootstrap may be 
technically feasible. However, two factors may limit 
the practical application of the method at present. 
First, current professional guidelines, standards, prin­
ciples, and practices in selection test validation are 
based on traditional parametric statistics. Further 
methodological research and empirical demonstra­
tions must be conducted to provide the technical 
foundation for revising these professional canons. 
Second, personnel selection tests and their validation 
are subject to legal review. Statistical evidence in 
employment discrimination litigation has probative 
value only to the degree that the underlying theory, 
model, and method are credible (Howard, 1994). 
Bootstrap is not without controversy, and therefore 
may not be viewed as credible in litigation. The 
principal challenge may come from the Uniform 
Guidelines’ admonition to “… avoid reliance upon 
techniques which to tend to overestimate a validity 
finding as a result of capitalization on chance … .” If 
not carefully explained, the bootstrap may have the 
appearance of exploiting chance to an unprecedented 
degree. Further research is required to demonstrate 
that the bootstrap does not lead to overestimates of 
validity, nor does it capitalize on chance. 
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Figure 1: Frequency distribution of TMC scores in unrestricted (Applicant) sample N = 

206,592 ( X = 75.20,σ = 14.11) 
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Figure 2: Frequency distribution of TMC scores in competitively hired ATCS 

sample: N = 10,869 ( X = 91.46,σ = 5.02 ) 
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APPENDIX A 

Distributions of TMC-NLCOMP correlations uncorrected for range restriction

for B = 1,000 bootstrap samples of n = 25, 50, …, 200


5% CI Lower: -0.251 Median: 0.207 95% CI Upper: 0.587 

Graph A-1: Distribution of TMC-NLCOMP correlations uncorrected for

range restriction for B = 1,000 bootstrap samples of n = 25


A1




5% CI Lower: -0.110 Median: 0.195 95% CI Upper: 0.476 
Graph A-2: Distribution of TMC-NLCOMP correlations uncorrected for range


restriction for B = 1,000 bootstrap samples of n = 50
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5% CI Lower: -0.072 Median: 0.186 95% CI Upper: 0.423 

Graph A-3: Distribution of TMC-NLCOMP correlations uncorrected for range

restriction for B = 1,000 bootstrap samples of n = 75
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5% CI Lower: -0.020 Median: 0.195 95% CI Upper: 0.404 

Graph A-4: Distribution of TMC-NLCOMP correlations uncorrected for range

restriction for B = 1,000 bootstrap samples of n = 100
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5% CI Lower: -0.008 Median: 0.187 95% CI Upper: 0.377 
Graph A-5: Distribution of TMC-NLCOMP correlations uncorrected for range


restriction for B = 1,000 bootstrap samples of n = 125
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5% CI Lower: -0.001 Median: 0.191 95% CI Upper: 0.368 
Graph A-6: Distribution of TMC-NLCOMP correlations uncorrected for range


restriction for B = 1,000 bootstrap samples of n = 150
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5% CI Lower: 0.016 Median: 0.193 95% CI Upper: 0.346 
Graph A-7: Distribution of TMC-NLCOMP correlations uncorrected for range


restriction for B = 1,000 bootstrap samples of n = 175


A7




5% CI Lower: 0.034 Median: 0.190 95% CI Upper: 0.332 

Graph A-8: Distribution of TMC-NLCOMP correlations uncorrected for range

restriction for B = 1,000 bootstrap samples of n = 200
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APPENDIX B 

Distributions of TMC-NLCOMP correlations corrected for range restriction for

B = 1,000 bootstrap samples of n = 25, 50, …, 200


5% CI Lower: -0.589 Median: 0.511 95% CI Upper: 0.898 

Graph B-1: Distribution of TMC-NLCOMP correlations corrected for range

restriction for B = 1,000 bootstrap samples of n = 25
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5% CI Lower: -0.298 Median: 0.487 95% CI Upper: 0.836 

Graph B-2: Distribution of TMC-NLCOMP correlations corrected for range

restriction for B = 1,000 bootstrap samples of n = 50
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5% CI Lower: -0.198 Median: 0.469 95% CI Upper: 0.796 

Graph B-3: Distribution of TMC-NLCOMP correlations corrected for range restriction

for B = 1,000 bootstrap samples of n = 75
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5% CI Lower: -0.055 Median: 0.488 95% CI Upper: 0.779 

Graph B-4: Distribution of TMC-NLCOMP correlations corrected for range restriction

for B = 1,000 bootstrap samples of n = 100
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5% CI Lower: -0.021 Median: 0.473 95% CI Upper: 0.753 
Graph B-5: Distribution of TMC-NLCOMP correlations corrected for range restriction


for B = 1,000 bootstrap samples of n = 125
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5% CI Lower: -0.003 Median: 0.481 95% CI Upper: 0.744 
Graph B-6: Distribution of TMC-NLCOMP correlations corrected for range restriction


for B = 1,000 bootstrap samples of n = 150
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5% CI Lower: 0.046 Median: 0.483 95% CI Upper: 0.719 

Graph B-7: Distribution of TMC-NLCOMP correlations corrected for range restriction

for B = 1,000 bootstrap samples of n = 175
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5% CI Lower: 0.094 Median: 0.477 95% CI Upper: 0.703 

Graph B-8: Distribution of TMC-NLCOMP correlations corrected for range restriction

for B = 1,000 bootstrap samples of n = 200
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APPENDIX C 

Distributions of TMC-NLCOMP correlations generated for a bivariate normal population 
with parameters ρ and SR from B = 1,000 bootstrap samples of n = 25, 50, …, 200 

5% CI Lower: -0.193 ρ = .182, s = .1974 95% CI Upper: 0.545
r 

Graph C-1: Distribution of TMC-NLCOMP correlations generated for a bivariate normal 
population with parameters ρ and s from B = 1,000 bootstrap samples of n = 25 

r 
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5% CI Lower: -0.088 ρ = .182, s = .1381 95% CI Upper: 0.442r 

Graph C-2: Distribution of TMC-NLCOMP correlations generated for a bivariate normal 
population with parameters ρ and s from B = 1,000 bootstrap samples of n = 50 

r 
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5% CI Lower: -0.012 ρ = .182, s = .1124 95% CI Upper: 0.377r 

Graph C-3: Distribution of TMC-NLCOMP correlations generated for a bivariate normal 
population with parameters ρ and s from B = 1,000 bootstrap samples of n = 75 r 
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5% CI Lower: -0.010 ρ = .182, s = .0972 95% CI Upper: 0.360r 

Graph C-4: Distribution of TMC-NLCOMP correlations generated for a 
bivariate normal population with parameters and s from B = 1,000r 

bootstrap samples of n = 100 
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5% CI Lower: 0.011 ρ = .182, s = .0868 95% CI Upper: 0.373
r 

Graph C-5: Distribution of TMC-NLCOMP correlations generated for a 
bivariate normal population with parameters ρ and s from B = 1,000r 

bootstrap samples of n = 125 
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5% CI Lower: 0.025 ρ = .182, s = .0792 95% CI Upper: 0.335r 

Graph C-6: Distribution of TMC-NLCOMP correlations generated for a 
bivariate normal population with parameters ρ and s from B = 1,000r 

bootstrap samples of n = 150 
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5% CI Lower: 0.026 ρ = .182, s = .0733 95% CI Upper: 0.337
r 

Graph C-7: Distribution of TMC-NLCOMP correlations generated for a 
bivariate normal population with parameters ρ and s from B = 1,000

r 

bootstrap samples of n = 175 
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5% CI Lower: 0.051 ρ = .182, s = .0685 95% CI Upper: 0.316r 

Graph C-8: Distribution of TMC-NLCOMP correlations generated for 
a bivariate normal population with parameters ρ and s from B = 1,000

r 

bootstrap samples of n = 200 
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