Document for the monitor evaluation program color2readability.m

Jing Xing, 08/02

Background: Krebs et al (HFES2002) measured the text readability for

various screen text size and various text colors. The data were fitted

into a formula that defines the relationship between the minimal text

size (view angle) and the text/background contrast. They concluded

that the readability can be determined with the luminance

contrast. Therefore, we can compute the text and background luminances

for given RGB values or CIE color xy values then compute the text

readability to evaluate the performance of a particular monitor.

1. General description

This program is an alternation to the monitor evaluation program

rgbdistance.m, which needs RGB values of text and background as the

inputs.

color2readability.m prompts either the minimal text size or the

maximal view distance of error-free reading for given (inputs) color

names of text and background.

The program contains a table called 'colorName', which specifies

x,y values for a list of colors. Please replace this table with

your own definitions of color naming. Make sure that you use the

same format as the default 'colorTable' does.

Like rgbdistance.m, color2readability.m contains a set of color

calibration matrix that are obtained from screen rgb-xyl measurements.

Please replace these matrix (rgb0, rl, gl, bl and gray in the

program) with your own measurements of the monitor to be evaluated.

Make sure that the formats of the matrix are the same as those

in the program.

3. Input parameters

1) Input option:

Once the minimal view angle of the text for error-free reading is

computed, the readability can be expressed either as the minimal text

size (unit: mm) or the maximal view distance (unit: inch). These

two are inter-changable by the following equations:

 distance=60*57.3*textSize/(25.4*viewAngle);

 or textSize=25.4*viewAngle*distance/60*57.3

 (the unit of viewAngle is arc. min)

The program prompts the distance for fixed screen text size or prompts

the text size for fixed view distance.

% disp('1: Input screen text size to get maximal view distance (error-free reading).');

% disp('2: Input view distance to get minimal text size (error-free reading).');

% option = input('Please enter your selection (1 or 2): ');

if (option == 1)

 textSize= input('Enter the screen text size (mm): ');

else

 distance = input('Enter the view distance (inch): ');

end

2): Color tolerance

For a given color or its CIE xy values, the program will search for

the corresponding RGB values that yield maximum readability within

a defined neighboring region of given xy values. Color tolerance here

is the xy neighboring region that define the same color. The tolerance

is defined as the percents of deviations from the given xy values.

For example:

CIE values for red color are x=0.6 and y=0.35

color tolerances are DX=0.02 and DY=0.02

All xy values within an oval region that has its x-axis=DX*x,

y-axis=DY*y and is centered at x, y correspond to color red.

The program asks users to enter x and y tolerance or hit "Enter" key

to use default values DX=0.02, DY=0.02.

% dXY= input('Enter x and y tolerance (default 0.02 0.02): ', 's');

3) Text and background color

The program will first display the color table, then allow users to

enter the color selection for the text.

The colorTable is arranged in columns as color number, color name, x

value, y value. Users can either enter the number of the color or the

full color name. If a color is not specified in the table but the

xy values are known, you can enter "0" to specify your own color. The

program will then allow you to enter x and y values.

% disp('colorName table: color number, color name, x value, y value');

% disp(colorName);

% disp('Note: color number "0" is for user to define a color with its x,y values.');

% IN = input('Enter the text color name or its number (-1 or quit to exit):', 's');

% tmp_x = input('Enter x:','s');

% tmp_y = input('Enter y:','s');

The background color is entered in the same way as the above. In

addition, one can choose to enter the desired background luminance

that is specified by a brightness level (0-10). The brightness level

is an arbitrary number between 0-10, with 0 being the lowest and 10

being the maximum luminance of the specified background color.

For example, if the background color is red, the luminance range

for color red is 2.5-93. The desired background luminance will be

(maximum red luminance - minimal red luminance) * brightnessLevel/10

% disp('The desired background luminance is specified by a brightness level (0-10),');

% disp('with 0 being the lowest and 10 being the maximum luminance of the color.');

%backg_b = input('Enter the brightness level of the background color (0-10) (Default 0):', 's');

The program does not have the choice of brightness level for the text

because we assume that the desired luminance for the text is always

the maximal (in order to obtain the maximum readability).

4. Output parameters

1) Outputs of each trial (for selected text and background colors):

(i) the optimal text RGB values and the maximum text luminance:

(ii) the optimal text xy values (that are within the xy tolerance and

yield maximum luminance):

% s1=sprintf('the optimal text RGB values and the maximum text luminance:\n ');

% s2=sprintf('%4d %4d %4d %4d \n',rgbl(xyID,1:4));

% disp([s1 s2])

% s1=sprintf('the optimal text xy values : \n');

% s2=sprintf('%2.4f %2.4f \n',x(xyID), y(xyID));

% disp([s1 s2])

(iii) The background RGB values and the luminance for the given xy

 value,

(iv) The text/background contrast, minimal font view angle (arc. min)

 and maximal view distance (for error-free reading):

 The text/background contrast, minimal font view angle (arc. min)

 and minimal screen text size (error-free reading);

 The Units:

 contrast (-100 ~ 100), defined as

 (Ltext-Lbackground)/(Ltext+Lbackground);

 font view angle: arc min, the minimal view angle of the

 text size for error-free reading.

 textSize: mm, converted from viewAngle for given view distance.

 viewDistance: inch, converted from viewAngle for given text size.

%s1=sprintf('the text/background contrast, minimal font view angle

 (arc. min) and maximal view distance (inch): \n');

%s2=sprintf('%3.4f %4.2f %3.4f \n',contrast, fontsize, distance);

%disp([s1 s2])

2) Final output for all trials:

At the end (before quit) , the program displays the results for all

tested trials. Results for each trials are in rows, the columns are:

 text RGB value and Luminance, background RGB value and

luminance, contrast, fontViewAngle, textSize and viewDistance.

disp('display the results of all trials: ');

disp('Text: the RGB values and the maximum luminance for the text color;');

disp('Background: the RGB values of the color and the luminance at');

disp(' the desired brightness level;');

disp('Contrast: the luminance contrast of the text and the background;');

disp('fontViewAngle: the minimal view angle (arc. min) of the text ');

disp(' for error-free reading;');

disp('textSize or Distance: minimal text size (mm) or maximum view distance');

disp(' for error-free reading;')'

disp(' (textSize=25.4*fontViewAngle*viewDistance/(60*57.3)).');

 disp(' ');

if (option == 1)

 disp('text RGB luminance, background RGB Lum.,contrast, fontViewAngle, distance');

else

 disp('text RGB luminance, background RGB Lum.,contrast, fontViewAngle, textSize');

end

final_rgbl(:, 1:8)=round(final_rgbl(:,1:8));

for n=1:trialID;

 s3=sprintf('%3d %3d %3d %3d %3d %3d %3d %3d ',...

 final_rgbl(n, 1:8));

 s4=sprintf('%3.3f %4.2f %3.3f',...

 final_rgbl(n,9:11));

 disp([s3 s4]);

end

5. Basic algorithms

1) Color space convert

(i) Convert xyl (l is for luminance) to XYZ;

(ii) convert XYZ to scalar values RGB ([R G B]= w * [X Y Z]');

(iii) selecting valid RGB values (R,G or B >=0 and <=1).

(iv) interpolating digital r, g, b values (0-255) from

 the screen calibration matrix.

2) Readability calculation:

The following equations were derived from experimental data fitting

and were used in rgbdistance.m.

 if(ptb==0.5) contrast=(lum_t-lum_b)/(lum_t+lum_b);

 fontsize= 10.41*exp(-abs(contrast)/0.1699) + 5.028;

 end;

 if(ptb==0) contrast=(lum_t-lum_b)/(lum_b);

 fontsize=7.434*exp(-abs(contrast)/0.6297) + 5.028;

 end;

 if(ptb==0.2) contrast=(lum_t-lum_b)/(0.2*lum_t+0.8*lum_b);

 fontsize= 8.496*exp(-abs(contrast)/0.4803) + 5.028;

 end;

where, ptb is a parameter that decide which formula of contrast

definition to be used (actually the choice of ptb does not

affect the final readability calculation at all); fontSize is

the minimal font size (angle of view, arc min) for error free reading.

6) Diagram of the program (the comments from the color2readability)

%Step 0: basic inputs:

%1) definition of contrast (default: ptb=0.5)

%2) screen font size (for computing maximum reading distance);

%3) x,y tolerance, which are the percent deviation from the center.

% The program will search for the RGB values that yields the

% maximal text luminance within an oval region of x,y specified

%by the xy tolerance.

%step 1: included tables

%step 1.1: table of color name

%A table of color name. Users can either enter the

% number of the color or the name of the color.

% To input user defined color, type "0" and the

%program will prompt "input x, y values". (not working by 08/10/02!!)

%step 1.2: tables of screen color calibration

%screen data: [r g b x y l]:

% Screen data are stored in four matrix:

%rgb0 where r=g=b=0;

%rl where g=b=0;

%gl where r=b=0;

%bl where r=g=0;

%To use this program for a different screen, just replace the

%data in the four matrix below (rgb0, rl, gl, bl).

%step 3: preprocessing for the computations

%Step 3.1: convert xyl into XYZ, thus we obtain three new matrix:

% rl --> rxyz [dr dg db X Y Z]

% gl --> gxyz

% bl --> bxyz

%% Ideally, when the color stays the same (for example, red gun only),

%% x, y values should be constant, independent of luminance (Y).

%% However, due to the insufficient lightness at lower luminance,

%% x, y values change for the luminance varying between 0- 40~50.

%% This can be illustrated by plotting x,y with luminance in the

%% above rgbxyL matrix.

%% This non-linearity causes errors in estimating (R G B) from

%% x, y values. We solved this problem by only using the

%% stablized x, y measurements at high luminance region.

%% This is down in the following lines:

%%x(1:12)=(x(11)+x(12))/2;

%%y(1:12)=(y(11)+y(12))/2;

% Step 1.3: Convert rl_2, gl_2, bl_2 into rgb-XYZ for the monitor:

% Step 3.2 subtraction in order to estimate XYZ correctly %%%%%%%%

% Step 3.3: compute color weight matrix [X Y Z]=w*[R G B]'

% [X Y Z]=w*[R G B]'

%%G=B=0 X=WxrR; R=1 for r=255, thus Wxr=rxyz_2(12,4)*255/255

%% In principle, the weight matrix w can be computed

%% from the XYZ values in each tristimulus channels.

%% Ideally, w should be invariant with the luminance.

%% It is generally recommanded to use the XYZ values

%% at the maximal tristimulus level (r g or b =255):

 %w=[Xr,max Xg,max Xb,max

% Yr,max Yg,max Yb,max

 % Zr,max Zg,max Zb,max]

% step 3.4 inverse of the matrix w: because [X Y Z]=w*[R G B]';

% [R G B]'=inv(w)*[X Y Z];

% Step 3.5: Compute scalars R G B

% R, G, B in the equation [X Y Z]=w*[R G B]' are scalar

% values of r, g, b varying from 0 to 1.

%R=X/Xmax, G=Y/Ymax, B=Z/Zmax;

% Step 4: Input color names

% 1) text color name;

% 2) background color name;

% 3) background brightness level (0-10), 0 being the darkest and 10 being the

% brightest.

% For example, to use black background, chose "white" color and "0" brightness.

%step 4.1 text color

%step 4.2: background color and brightness

 %Step 5: Compute RGBL for the chose text color

 %within the xy-tolerance DX and DY (default: 0.05)

 %(x,y,L)->(X,Y,Z)->(R G B)->(dr dg db)

 %step 5.0 : the xy values of the color

 xc=str2num(text_x{1});

 yc=str2num(text_y{1});

 %Step 5.1: calculating x, y variations within the tolerance.

 % The center color is defined with [xc yc].

 % We will search for the optimal [x y] values with in an

 % oval region of x y variations from the center xc yc.

 % Step 5.2: Calculating the Luminance range and

 %discrete Y variations.

 %Ystep is the step size (increment) of luminance.

 % rgb values can be searched at each Y step.

%Begin to circulating within the oval region of color tolerance

 %Step 5.3: Calculating [Rv Gv Bv] from [X Y Z] for each [x y]

 % variation. Rv, Gv , Bv each has the length of LY, same as

 % X, Y, Z.

 %Step 5.4: This step is to save computation time. The

 %purpose is to reduce the circulation length LY.

 %We do this by finding the uplimit of the index

 %beyond which R, G, or B values are greater than 1,

 % and the low limit of the index below which R G or B

 % values are less than zero.

 %find the uplimit of the index with valid RGB values (RGB<1)

 %find the low limit of RGB values (R, G, B>0)

 %Step 5.5: Compute dr dg db within the valid range of RGB

 % interpolating r:

 % interpolating g:

 % interpolating b:

 %5.6 display the results on the text color

 %Step 6: Compute RGBL for background

%Step 7: compute readability

%contrast=(lum_t-lum_b)/(lum_t+lum_b);

%fontsize= 10.41*exp(-abs(contrast)/0.1699) + 5.028;

% distance=60*57.3*textSize/(25.4*fontsize);

 %step 8: begin another trial or -1 for quit the testing

%% step 9: display all the results:

