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The FAA seeks to characterize the ability of UAV viewing systems to support target detection and
identification. Existing system evaluation methods require expensive and time consuming subjective ex-
periments. We hope to replace those experiments with the Spatial Standard Observer, a simple model of
human detection and discrimination. This report describes progress on two elements of this project: simu-
lation of an existing subjective data set using the Spatial Standard Observer (SSO), and development of a
web-based application for demonstrating SSO-based visibility calculations. Preliminary results indicate

the utility of both elements.

Introduction

The FAA seeks to compile and review the
characteristics and performance of existing opti-
cal/digital viewing systems that could be used to
enhance the human UAV operator’s ability to
see-and-avoid potential conflicts with other
manned and unmanned aircraft. The systems will
be characterized by their performance character-
istics: field-of-view, field-of-regard, modulation
transfer function, focal point, and lens quality, as
well as bandwith and compression. This com-
parison will be used to determine the ability of
these systems to allow detection of static images
of differing sizes, at a range of distances in, vari-
ety of visibility conditions, i.e., sense-and-avoid.

In this context there is a need to supplement
the Army’s target acquisition model with a hu-
man vision model to predict observers’ probabil-
ity of detection and recognition of aircraft and
other targets. In the current Army target acquisi-
tion model, these tasks are associated with par-
ticular values of N50 for particular image sets
and classes, which are obtained by expensive and
time consuming subjective experiment. We pro-
pose to create and evaluate a tool for computing
N50 from a given image set and given classifica-
tions, thus obviating the need for subjective
measurements. The predicted N50s would be en-
tered in the Army’s target acquisition perform-
ance model, Night Vision Thermal Imaging Sys-
tem Performance Model (NVTherm), to deter-
mine the effects of camera field-of-view, camera
field-of-regard, camera modulation transfer func-
tion, opposing aircraft size, contrast, distance,
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and atmospheric conditions on observers’ detec-
tion and recognition of an aircraft[1].

We have developed a model called the Spatial
Standard Observer (SSO) that allows predictions
of visual detection and discrimination of foveal
spatial targets (Watson & Ahumada, 2004). The
goal of this project was to assess the feasibility of
using the SSO to compute N50 values for target
image sets.

The first effort in this project has been to
simulate the results of a recent psychophysical
experiment that estimated N50 for a set of mili-
tary vehicles[2]. A second concurrent effort has
been the development of a prototype tool for cal-
culation of the visibility of manned or unmanned
aircraft under specified viewing conditions.

Target ldentification Model

Here we describe the development and
evaluation of a model to predict image and object
identification. We begin with a description of the
experiment whose data will be modeled.

Psychophysical Experiment

The experiment has been more extensively
described in another report[2]. Here we provide a
brief summary. The experiment consisted of two
parts, using visible and infrared imagery respec-
tively.

In each part of the experiment, the source im-
ages consisted of 144 digital images, of 12 “ob-
jects” in 12 *aspects.” An illustration of two of
the objects and three of the aspects are shown for
the visible and infrared imagery in Figure 1. Each
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object is a particular military vehicle, and each
aspect is a view of that vehicle. The twelve as-
pects are approximately the same from vehicle to
vehicle. Of the twelve aspects, eight are views
from an elevation of seven degrees, while the
remaining four are from 0 degrees.

These source images were blurred with Gaus-
sian kernels of 6 possible scales,
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The scales ranged from 5 to 30 pixels in steps
of 5. This yields a total of 6 x 144 = 864 images
for each image set (visible or infrared). The six

levels of blur are illustrated in Figure 2.

Identification experiments using trained hu-
man observers were run separately on each level
of blur. Each observer viewed a subset of 144
images of one type (visible or infrared), consist-
ing of 2 aspects for all 12 objects in all 6 blurs.
The two aspects were chosen in a quasi-random
fashion. The observers were previously trained
on identification of these vehicles, using different
images. On each trial, the observer attempted to
identify the object. The percent correct was re-
corded. The results are shown in Figure 3.

Figure 1. Example images. Two objects (rows) and four aspects (columns) are shown for both the
visible and infrared image sets. The last aspect shows an example of the 0 degree elevation.

Figure 2. Examples of the six levels of blur applied to one image of each type (visible and infrared).
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Figure 3. Percent correct identification as a
function of blur scale for visible and infrared
targets.

Model

The first model we have considered is a sim-
ple image classification machine operating on the
basis of a normalized correlation matching rule.
This model computes a set of N discriminant
functions, where N is the number of possible im-
ages (in this case, N = 144). One discriminant
corresponds to each candidate image, and the
model selects the image with the largest dis-
criminant.

The matching is assumed to occur in a “neural
image” space, which is reached by transforming
the image. The transformation consists of a con-
version to contrast and filtering by a contrast sen-
sitivity filter (CSF). The CSF is derived from our
Spatial Standard Observer (SSO), a simple model
of foveal contrast detection[3].

The templates consist of the transformed im-
ages. If the presented transformed image is writ-
ten s (for sample), then the discriminant for im-
age i is given by

d; (s): sg; (2)

where t; is the normalized template. It is not nec-
essary to divide by the norm of s, since it is the
same for all discriminants.

Each transformed image can be expressed as a
product of its normalized form and its energy

9 = &ty ©)
Thus if image k is presented,

S= ektk +Nn (4)
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where n is a neural noise image (noise in the neu-
ral image space). Then

d; (s)= (ektk + n);i

=¢e.1,g; +ng;

()

We can divide through by e, without changing
the ranking of the discriminants,

d; (s): t.g, +ne_gi
‘ (6)
ng;
=Pik T ?

where p; is the correlation (dot product) between
each pair of neural images.

If the noise is white and normally distributed
with standard deviation o, then the second term
in this expression will be a normally distributed
random variable with standard deviation ofe,. So
finally, each discriminant will be be a normal
random variable distributed as

d; (s): Normal (pi‘k 'ezJ (7)
k

To simulate performance of this model, we
simply pick a noise o, and generate N discrimi-
nant values for a number of trials T for each of N
sample images. On each trial, the image selected
is the largest discriminant, and from these results
we can compute percent correct (we can also
generate confusion matrices). We compute both
percent correct image identification and correct
object identification. The performance of the
model is controlled by a single parameter: o, the
standard deviation of the “neural noise” added to
the sample neural image. In Figure 4, we plot the
percent correct for image identification and ob-
ject identification for images blurred by 30 pix-
els.

As expected, increasing noise reduces per-
formance. The red and green lines in the figure
show the asymptotic guessing performance ex-
pected given the numbers of images and objects,
and the larger values of noise reach these asymp-
totes.

Another question of interest is whether the
image and object identification performance can
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be related by a simple guessing model: is the ob-
ject identification performance what would be
expected by assuing that if the model does not
pick the correct image, that it then guesses
among th other images. In that case the percent
correct object identification (Po) can be com-
puted from the percent correct image identifica-
tion (Py) as

Py=P +(- P,)%. (8)

This prediction is shown by the gray curve in
Figure 4. Clearly, in this example, the object
identification is better than would be expected
from this prediction. We call this the "object ad-
vantage” (OA). The OA is negligible at 5 pixels
blur, but increases to a max of about 0.13 at 30
pixels. Without an aperture (see below), it is
about the same for VIS and IR. With an aper-
ture, it is smaller for IR than for VIS. Possible
sources for the OA are: background (without ap-
erture), object color (for visible), and overall ob-
ject size. We will return to this point later.
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Figure 4. Percent correct image (lower black
curve) and object (upper black curve) identifi-
cation for various levels of the noise standard
deviation. These results are for visible targets
at blur scale = 30 pixels. Green and red lines
indicate predicted guessing performance. The
gray curve is object identification predicted
from image identification using a guessing
model (see text).

Object Identification vs Blur Scale

The results for image identification can also
be plotted as a function of blur scale, as shown in
Figure 5. The value plotted is percent correct ob-
ject identification (as in the upper curve in Figure
4), and each curve is for a different noise sigma.
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The figure also includes (blue and red curves) the
data from the human observers. No attempt has
been made at this point to find the best fitting
value of noise o, but it is clear that a value of
around -2.25 yields a rough approximation to the
human data for visible images, and -2 for infrared
images.
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Figure 5. Simulated percent correct object
identification as a function of blur scale for
several different values of neural noise (Log o
= -2.5, -2.25, -2., -1.75). The blue and red
curves are the human data. A) visible, B) in-
frared.

Removing the Background

As noted above, object identification per-
formance is better than expected from the guess-
ing model, which indicates that on average dif-
ferent aspects of one object are more similar (as
images) than are aspects of another image. This
could be due in part to the object background,
which is nearly constant from aspect to aspect.
To test this we have computed results for images
with the background removed. Aperture images
defining the object area were provided by the
U.S. Army Night Vision and Electronic Sensors
Directorate. The apertured image was constructed
as image * aperture + 2048 * (1 - aperture). An
example of the construction of one apertured im-
age is shown in Figure 6.
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Figure 6. Construction of an apertured image.
A) Original image, B) aperture, C) apertured
image.

The model results obtained using the aper-
tured images are shown in Figure 7. Overall, per-
formance is somewhat better than for the original
images. The visible image performance for —Log
o =-2.25 is now closer to the data, while the in-
frared data lie between Log o=-2.5 and -2.25.
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Figure 7. Object identification performance vs
blur scale for apertured images. Details as in
Figure 5.
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Visible vs Infrared

One purpose of the original psychophysical
experiment was to determine the relation between
N50 for visible and infrared images of similar
objects. If the N50s were the same, that would
allow the same metric to be used regardless of
the iamge type. However, in that experiment the
estimated N50s differed by about 50% (7.5 visi-
ble, 11.5 infrared)[2].

Figure 8 compares model results for visible
and infrared. A short summary is that perform-
ance is somewhat better for infrared than for
visible, but that this advantage largely vanishes
with apertured images. Recall that human per-
formance is slightly lower for infrared, so this
consititutes a small discrepancy between model
and data.
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Figure 8. Object identification performance vs
blur scale for visible (black) and infrared (red)
images. A) Original, B) apertured. Other de-
tails as in Figure 5.

Summary

A very simple identification model incorpo-
rating the Spatial Standard Observer can generate
performance similar to human data for both visi-
ble and infrared imagery. Some discrepancies
remain, notably the slightly steeper decline with
blur, and the poorer performance with infrared

FAA/NASA IAA DTFA01-01-X-02045 Mod 005 Task 16



imagery, found in the human results. We hope to
investigate these matters further in the second
stage of this project.

Future work on this part of the project will in-
clude alternative SSO-based models, as well as
other human data sets[4]. We hope to understand
better the reasons for infrared vs visible perform-
ance. We also want to work with aircraft rather
than tank images.

Visibility Calculator

In a second part of this project, we have be-
gun development of a prototype application to
predict visibility of aircraft targets as they might
be seen from a UAV. Conversely, the tool could
be used to predict visibility of the UAV from an-
other aircraft. A screen shot of the prototype ap-
plication is shown below.

The tool allows the user to select an aircraft,
as well as various viewing parameters. The tool
then computes the visibility of the aircraft, ex-
pressed in units of JND. The tool is currently
online and operational at the URL shown in the
figure.

The tool operates by computing a rendered
image from a selected 3D model. The rendered
image is then processed using the current version
of the Spatial Standard Observer (SSO). The tool
is implemented using webMathematica, an exten-
sion of the Mathematica language[5]. The current
version of the prototype is only a proof of con-
cept, and must be augmented by realistic optical
and atmospheric effects, and must be calibrated
in both geometric and photometric aspects. We
plan to accomplish these augmentations in the
second phase of this project.
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m m a http:ffevelelh.a.rc.nasa.gnv:B[}Bwaeb-Mathemaﬂcafabw,fjs .;_'-:-
oy

Figure 9. Screen shot of web-based visibility tool.
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