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ABSTRACT 

Given the inherently hierarchical nature of 
organizational reality, researchers have always been 
interested in how to best analyze data that reside at 
multiple levels of analysis (e.g., at the individual and 
crew level). Recently, a class of statistical techniques 
has been developed for just this purpose. The most 
popular of these techniques is known as Hierarchical 
Linear Modeling (HLM). The purpose of this paper is 
to provide an introduction to HLM, to describe HLM’s 
statistical assumptions, to speculate about the effects of 
violating these assumptions, and to propose viable 
solutions for aviation researchers so that they can 
apply this versatile statistical technique in their own 
research. 

AN INTRODUCTION TO HLM 

Hierarchically-nested data are ubiquitous in 
commercial aviation research. For example, pilots are 
nested within crews, crews are nested within 
domiciles, and domiciles are nested within fleets. 
Longitudinal and time-series data can also be 
considered a special form of nested data. For example, 
when multiple observations are available for 
individual pilots, and the number of observations 
varies across pilots, the observations can be considered 
nested within pilots (Bryk & Raudenbush, 1992). 

Prior to the development of techniques such as 
HLM, there were two main ways to analyze multi-level 
data. Unfortunately, both techniques violate a number 
of critical statistical assumptions. In the paragraphs 
that follow, we compare and contrast these approaches 
with HLM. For the sake of simplicity, we will use an 
example that has two independent variables 
(situational awareness and crew cohesion) and one 
dependent variable (maneuver proficiency). Situational 
awareness and maneuver proficiency are assumed to 
be individual-level variables, while cohesion is 
assumed to be a crew-level variable. 
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Approach #1 (Individual Level of Analysis) 

This approach is conceptualized and analyzed 
entirely at the individual level of analysis. All 
analyses are calculated based on the total number of 
pilots. However, because cohesion is a crew-level 
variable, each pilot receives his/her crew’s score. 
Unfortunately, this approach violates the ordinary least 
squares (OLS) assumption that all observations are 
independent of one another (Berry, 1993). 

Previous research suggests that even small degrees 
of non-independence can lead to biased parameter 
estimates (Bliese, 1998; Ostroff, 1993). Moreover, 
because the number of pilots necessarily exceeds the 
number of crews, the standard errors for crew-level 
variables will be underestimated, thereby leading to 
spuriously high levels of statistical significance. 

Example #1 (Individual Level of Analysis) 

When using OLS regression, each crew’s cohesion 
score is assigned to both pilots within that crew. For 
example, if Crew A had a high level of cohesion (4.5 
on a 5-point scale), both members of Crew A would 
receive their individual scores for situational 
awareness and maneuver proficiency, but the crew’s 
score of 4.5 for cohesion. Similarly, if Crew B had a 
low level of cohesion (2.5 on a 5-point scale), both 
members of Crew B would receive their individual 
scores for situational awareness and technical 
proficiency, but the crew’s score of 2.5 for cohesion. 
An example data file might look something like this: 

CREW POSITION SA COHESION PROFICIENCY 
A CAPT 4.0 4.5 2.0 
A FO 2.0 4.5 3.0 
B CAPT 3.0 2.5 4.0 
B FO 2.0 2.5 2.0 
C CAPT 2.0 3.0 5.0 
C FO 4.0 3.0 4.0 





The OLS equation that represents this relationship 
would appear something like this: 

Proficiency = b0 + b1 Sit. Awareness + b2 Cohesion + r 

This is a typical OLS regression equation. The 
dependent variable, individual maneuver proficiency, 
is modeled as a function of three factors: individual 
situational awareness (b1), crew cohesion (b2), and a 
residual term (r) that represents errors of prediction. 
The intercept (b0) is merely a statistical necessity; it 
represents the “average” level of maneuver proficiency 
for a hypothetical pilot with zero situational awareness 
and whose crew has zero cohesion. As stated earlier, 
because the observations are non-independent and 
calculated using the wrong sample size, the paramater 
estimate and standard error for cohesion are likely to 
be biased. 

Approach #2 (Crew Level of Analysis) 

One way to avoid the previously-described problem 
is to use data at only one level of analysis. This 
approach is conceptualized and analyzed entirely at 
the crew level. All analyses are calculated based on 
the number of crews. However, because situational 
awareness and maneuver proficiency are individual-
level variables, each crew receives the mean of its 
pilots’ scores on these variables. 

While this technique obviates the problems 
associated with non-independence, it creates an 
entirely different set of problems. For example, by 
aggregating all variables to the crew level, meaningful 
within-crew variance is ignored, thereby precluding 
the detection of theoretically valid relationships at the 
individual level. In addition, because the number of 
crews is necessarily smaller than the number of 
individual pilots, this approach can result in low levels 
of statistical power. Finally, when individual level 
variables are aggregated to the crew level, the 
researcher may be left with variables of questionable 
construct validity (Hofmann, Griffin, & Gavin, 2000). 

Example #2 (Crew Level of Analysis) 

When using OLS regression to examine the effect 
situation awareness and crew cohesion on maneuver 
proficiency, all individual-level variables are first 
aggregated to the crew level. For example, if Crew A 
has two pilots, and their individual levels of situational 
awareness are 4.0 and 2.0 (on a 5-point scale), the 
crew as a whole would receive a score of 3.0. 
Similarly, each crew would be assigned its respective 

means for situation awareness, cohesion, and 
maneuver proficiency. An example data file might 
look something like this: 

The OLS equation that represents this relationship 
would appear something like this: 

Proficiency = b0 + b1 Sit. Awareness + b2 Cohesion + r 

Again, this is a typical OLS regression equation. 
The dependent variable, maneuver proficiency 
(aggregated to the crew level), is modeled as a 
function of three factors: aggregated individual levels 
of situational awareness, crew cohesion, and random 
error. As before, the intercept is a statistical necessity 
that represents the “average” level of maneuver 
proficiency for a hypothetical crew with zero 
situational awareness and zero cohesion. As stated 
earlier, because all estimates are based on the total 
number of crews, meaningful within-crew variance is 
lost and statistical power is reduced. 

Approach #3 (Hierarchical Linear Modeling) 

A third approach is to use a multi-level variance 
decomposition technique such as HLM that 
simultaneously performs both individual (level-1) and 
crew level (level-2) analyses. At the individual level, 
HLM calculates a separate OLS regression equation 
for each crew between the individual-level predictor(s) 
and the individual-level criterion. Because this is a 
traditional OLS regression, there will be an intercept 
term and one or more slope terms, depending on the 
number of predictors. Because there are multiple 
crews, there will most likely be between-crew variance 
in these intercepts and slopes. 

Next, HLM uses the intercepts and slopes from the 
individual-level model as dependent variables in a 
subsequent crew-level analysis. In the level-2 
analysis, crew level variables are used to predict the 
level-1 intercepts and slopes using the expectation 
maximization (EM) algorithm. When the level-1 
intercept is used as the dependent variable, the 
analysis becomes very similar to a hierarchical 
regression of main effects. When the level-1 slope is 
used as the dependent variable, the analysis becomes 
very similar to a moderated regression. 

CREW POSITION SA COHESION PROFICIENCY 
A BOTH 3.0 4.5 2.5 
B BOTH 2.5 2.5 3.0 
C BOTH 3.0 3.0 4.5 



Example #3 (Hierarchical Linear Modeling) 

Unlike the previous two techniques, HLM uses all 
variables in their original form. Going back to our 
previous example, situation awareness and maneuver 
proficiency remain at the individual level, while 
cohesion remains at the crew level. An example data 
file might look something like this: 

When statistical analyses are performed, the relative 
amounts of within- and between-crew variance in the 
criterion variable are first partitioned. Next, all 
individual-level analyses are based on the number of 
individuals, and are compared to the amount of 
within-crew variance. Finally, all crew-level analyses 
are based on the number of crews, and are compared to 
the amount of between-crew variance. 

Because the non-independence among individual-
and crew-level predictors can be calculated, HLM also 
computes cross-level relationships. The HLM 
equations that represent these relationships would 
appear something like this: 

Level 1: Proficiencyij = b0j + b1j Situational Awarenessij  + rij 

Level 2: 	 b0j = ã00 + ã01Crew Cohesionj + U0j 

b1j = ã10 + ã11Crew Cohesionj + U0j 

At the individual level (level-1), individual maneuver 
proficiency is modeled as a function of two factors: 
individual levels of situational awareness (b1j) and 
within-crew error (rij). As before, the intercept (b0j) is 
a statistical necessity, representing the “average level” 
of maneuver proficiency for a hypothetical pilot with 
zero situational awareness. Although this is a typical 
OLS regression equation that has been performed at 
the individual level, separate OLS regression 
equations are computed for each crew. 

It must be remembered that crews vary along a 
number of dimensions. For example, due to the quasi-
random pairings of captains and first officers, crews 
will vary in their average level of maneuver 
proficiency. Similarly, crews will also vary in the 
degree to which the individual-level predictor(s) 
predict the individual-level criterion. As a result, 

CREW POSITION SA COHESION PROFICIENCY 
A CAPT 4.0 4.5 2.0 
A FO 2.0 4.5 3.0 
B CAPT 3.0 2.5 4.0 
B FO 2.0 2.5 2.0 
C CAPT 2.0 3.0 5.0 
C FO 4.0 3.0 4.0 

there is likely to be significant between-crew variance 
in their level-1 intercepts and slopes. 

At level-2, the first analysis focuses on predicting 
the intercepts from the level-1 analysis. This 
“intercept as outcome” model (b0j) represents the 
extent to which crew cohesion predicts individual 
maneuver proficiency after controlling for individual 
levels of situational awareness. It varies as a function 
of two factors: crew cohesion (ã01) and between-crew 
error (U0j). The intercept (ã00) represents the 
“average” level of maneuver proficiency for a 
hypothetical crew with zero cohesion. 

The second level-2 analysis focuses on predicting 
the slopes from the level-1 analysis. This “slope as 
outcome” model represents the moderating effect of 
crew cohesion on the situational awareness-maneuver 
proficiency relationship. It varies as a function of two 
factors: crew cohesion (ã11) and between-crew error 
(U0j). The intercept (ã10) represents the “average” 
level of maneuver proficiency for a hypothetical crew 
with zero cohesion. 

Summary 

Multi-level variance decomposition techniques such 
as HLM offer a number of advantages over traditional 
analysis techniques such as ANOVA and regression. 
First, because HLM separates out the criterion 
variance into within- and between-crew components, 
error terms are not systematically biased. This leads to 
more accurate effect size estimates and standard 
errors. Second, because HLM uses all available 
information, meaningful variance is not wasted. 
Finally, HLM allows for testing cross-level effects. 

Despite its advantages, HLM is based on a number 
of statistical assumptions, some of which may or may 
not be tenable. In the section that follows, these issues 
will be explored in detail. 

HLM’s ASSUMPTIONS (AND THE 
CONSEQUENCES OF VIOLATING THEM) 

Between- and Within-Crew Variance 

Before any multi-level analysis can be conducted, a 
number of theoretical and statistical assumptions must 
be tested. First, key variables in the data set must 
contain sufficient amounts of within- and between-
crew variance. Quite simply, if there is not a sufficient 
amount of within-crew variance, then the individual 
level (level-1) predictor(s) will not exhibit significant 



relationships with the individual level criterion. 
Likewise, there must be a significant amount of 
between-crew variance. Otherwise, there will be no 
significant relationships among the crew level (level-
2) predictor(s) and the individual level (level-1) slopes 
and intercepts. Estimates regarding the relative 
amount of within- and between-crew variance are 
typically assessed via intra-class correlations (Bryk & 
Raudenbush, 1992). 

Unfortunately, there is little consensus regarding 
what constitutes a “sufficient” amount of within- and 
between-crew variance. Traditionally, such estimates 
have been described in terms of statistical significance 
levels, rather than based upon an absolute criterion. 
This is problematic for two reasons. First, the amount 
of variance that is deemed statistically sufficient may 
vary as a function of sample size. More specifically, 
with larger sample sizes (i.e., high levels of statistical 
power), even trivial amounts of between crew variance 
may be statistically significant. 

Second, and perhaps more importantly, the amount 
of variance to be explained must have some theoretical 
meaning. For example, suppose that the criterion 
variable contains a disproportionate mix of variance 
(e.g., 10% individual level, 90% crew level). If, after 
controlling for all individual-level predictors, the 
crew-level independent variables predict significant 
amounts of the remaining criterion variance, the result 
may be statistically significant but practically 
meaningless. As a result, it is incumbent upon the 
researcher to specify the level of analysis of each 
variable a priori and confirm this by statistical means 
before proceeding with the analyses (Bryk & 
Raudenbush, 1992). 

Issues of Aggregation 

Unless derived by group consensus, all individual-
level estimates of crew-level phenomena must 
demonstrate significant within-group agreement, such 
as via estimates of rwg (James, Demaree, & Wolf, 
1984, 1993). If crew members don’t agree (i.e., if 
their individual responses are not readily 
interchangeable with one another) then it is 
questionable as to whether a true crew-level effect is 
being observed. Unfortunately, there is disagreement 
regarding the “acceptable level” of within group 
agreement. While Nunnally (1978) originally hinted 
that levels of agreement as low as .50 may be 
acceptable for research purposes, higher levels of 
agreement (approximately .90) are typically required 
for applied purposes. 

However, recent years have witnessed the use of 
variables with somewhat lower levels of within-group 
agreement. This is important, because substantial 
within-group disagreement (e.g., values as low as .50) 
represents a theoretical problem for applied 
researchers. Specifically, low levels of agreement may 
indicate within-group polarization, which is the exact 
opposite of agreement. In most cases, the crew-level 
variable should be dropped from the model, as it 
cannot be adequately tested. Alternatively, the level of 
agreement can be included as a separate crew-level 
predictor. 

Methods of Measurement 

There is considerable debate regarding how best to 
measure crew-level phenomena such as cohesion. 
Several researchers have argued that scale items 
should be posed and answered at the individual level, 
for example by requiring each individual to 
independently estimate his/her belief about 
him/herself. Others have argued that questions should 
be posed at the crew level and answered at the 
individual level, for example by asking individuals to 
independently estimate their crewmembers’ 
perceptions. Still others have attempted to obviate the 
entire issue by using consensus measures (Gibson, 
Randel, & Earley, 1996). 

Unfortunately, each technique has its drawbacks. 
Technically, inquiring about individual perceptions 
does not address a crew-level phenomenon, even if 
statistically significant levels of within-crew 
agreement are observed. At the same time, asking 
individuals to estimate collectively held beliefs may 
require information that they do not possess. Finally, 
consensus measures can lead to powerful members in 
the crew exerting their beliefs on less-powerful 
members, thereby effectively creating in an individual 
judgment. 

Prior Interaction 

If the underlying theory specifies that crew 
interaction is the sole cause of the crew-level variables, 
the observed levels of within-group agreement need to 
be based on the crewmembers’ prior interaction. 
Otherwise, common background experiences among 
the pool of potential crew members (e.g., training, 
organizational culture), may result in statistically 
significant levels of within-crew agreement, even with 
quasi-random pairings. Because researchers often fail 
to assess the “sharedness” of their predictor constructs 



at the outset of the crews’ formation, it is virtually 
impossible to determine whether “shared” effects 
(measured at a later point in time) are the result of the 
crewmembers’ interaction, or are due to other factors. 
To remove these common background effects, 
residualized agreement values may be used. 
Specifically, within-crew agreement values can be 
calculated immediately upon the crews’ formation. 
These values may then be statistically controlled for 
when the construct is measured at some point later 
during the crews’ lifecycle. 

Sample Size and Crew Size 

Recent empirical work suggests that the usefulness 
of hierarchical linear modeling techniques may be 
limited by the overall sample size. Specifically, for the 
to EM algorithm obtain statistical convergence, it is 
necessary to have a large number of crews (Pollack, 
1998). For large carriers, this may not represent a 
problem. For smaller carriers, however, this may 
require combining crews across multiple fleets. 

Crew size may also be an issue. Previous research 
employing group sizes as low as three have led to 
difficulties for the HLM program in estimating within-
crew variance, especially when the respondents answer 
the questions very similarly (Pollack, 1998). This has 
startling implications for commercial aviation 
research, because all new aircraft are certified for two-
person crews. Nevertheless, HLM may still be 
applicable to other types of flight-related crews, such 
as flight attendants, maintenance crews, and dispatch 
teams, although these groups are less likely to be 
represented in the commercial aviation research 
literature. Similarly, HLM may be applied to flight 
crews, if the definition of a flight crew is expanded to 
include both the pilot crew and the cabin crew. 

Range Restriction 

Like every other statistical technique, HLM requires 
that the predictor and criterion variables be 
approximately normally distributed (Bryk & 
Raudenbush, 1992). According to modern statistical 
theory, range restriction decreases the variance of 
observed variables. Decreased variances, in turn lead 
to decreased covariances, thereby operating against 
detecting empirical relationships. At the current time, 
the exact biasing effects of range restriction on cross-
level relationships is unknown. However, given that 
normally distributed variables are somewhat 
uncommon in organizational settings (i.e., to the 
extent that the organization’s recruitment, selection, 

training, performance evaluation, and termination 
programs are working properly) it is improbable that 
individual and crew performance ratings will be 
normally distributed (Murphy & Cleveland, 1995). 
Further, given that this is not a statistical artifact, but 
is rather a true organizational phenomenon, it does not 
make sense to “correct” such correlations. 

However, range restriction may be reduced by 
programs that are designed to increase the sensitivity 
of the evaluation process (Holt, 2001). For example, 
rater training programs can be developed to assist pilot 
instructors in making fine discriminations among 
performance levels. Assessment procedures can also be 
revised to encourage greater variability in performance 
ratings. 

The Criterion Problem 

One of the most damaging criticisms is that HLM 
requires the dependent variable to be operationalized 
at the lowest level of analysis. More specifically, if 
individual- and crew-level data are to be analyzed, 
then the criterion must be measured at the individual 
level of analysis. This represents a practical problem, 
because crew performance is typically more important 
to aviation researchers than individual performance 
(i.e., because both pilots share a common fate). 

One option is to collect multiple observations of 
individual and crew-level data over time, and to use 
residualized measures of crew performance as the 
criterion. For example, if individual situation 
awareness and crew performance are measured at time 
1 and time 2, time 1 measures of both constructs can 
be partialled out of crew performance at time 2. To 
date, however, only one published study has attempted 
such a feat (Griffin, 1997). Further, it is somewhat 
unclear exactly what such residualized measures are in 
fact measuring. Quite simply, because residualized 
scores are used, we know what they are not measuring 
(e.g., previous level-1 and level-2 effects), but it less 
clear what they are measuring. Finally, it may be 
difficult to collect large numbers of longitudinal, 
cross-level data because of time constraints, attrition, 
and other limited organizational resources. 

CONCLUSIONS AND RECOMMENDATIONS 

In this paper, we have attempted to articulate the 
strengths and weaknesses of multi-level variance 
decomposition techniques such as HLM. Given the 
inherently hierarchical nature of organizational 
phenomena, we believe that such techniques may be 
meaningfully applied to a number of research domains 



in the field of commercial aviation. 

Many of the previously-identified criticisms are not 
limited to HLM per se. Rather, many are common to 
all data analytic techniques, and may simply represent 
incongruities between the practice of organizational 
research and the statistical requirements. Despite 
previous arguments to the contrary (Bryk & 
Raudenbush, 1992), it would appear that HLM places 
just as many assumptions and requirements on the 
researcher as do single-level data analysis techniques 
such as multiple regression or ANOVA. 

While these arguments do not diminish the value of 
multi-level variance decomposition models, it does 
leave room for improvement. Perhaps the problem is 
not with the statistical modeling technique. Perhaps 
the problem lies in the way we as a field conduct 
research. Perhaps the answer lies somewhere in 
between. 

As noted earlier, HLM is an extremely flexible data 
analysis technique. Because of its flexibility, some 
might argue that HLM’s greatest value does not even 
involve the analysis of individual- and crew-level data. 
Rather, HLM’s true value may involve the analysis of 
repeated measurements over time. For example, given 
the voluminous amount of highly-reliable FOQA-type 
data that can be obtained from flight simulators (e.g., 
number of exceedences), HLM may help aviation 
researchers estimate individual performance 
trajectories for complex, technical maneuvers. By 
modeling performance decrements over time, aviation 
researchers may be able to estimate optimal re-training 
intervals on a maneuver-by-maneuver basis. 
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