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EXECUTIVE SUMMARY 
 
In 2002 the FAA, academic and industry partners established the FAA/Industry Training 
Standards (FITS) program whose purpose is to modernize General Aviation (GA) pilot 
training.   The FAA recognized the need to modernize training standards for pilots who 
would use new avionics technology that integrate the GPS (Global Positioning Systems) 
with the autopilot along with multifunction displays capable of depicting flight path, 
weather, terrain and traffic information.  These avionics and displays are touted as 
improving safety by enhancing pilot Situational Awareness and reducing pilot workload. 
The new technology has highlighted the need for programs to train and certify pilots to 
use the avionics suites. Glass cockpits place new demands on pilots including changes in 
the level and distribution of pilot workload during a flight, the need to manage and 
integrate information from multiple displays, navigate complex menu structures, and 
program navigation computers.  The literature describing the FITS program argues that 
the current structure and content of GA pilot training programs will not adequately 
prepare pilots for the challenges of using these technologies (FAA, 2003a; Glista, 2003b; 
Wright, 2002). The FITS curriculum attempts to address these issues by stressing training 
of risk management (RM), situational awareness (SA), aeronautical decision making 
(ADM) and single pilot resource management (SPRM). It also proposes to change pilot 
instruction to make it more relevant to real world flying by relying on scenario-based 
training (SBT). FITS proposes to emphasize the use of scenarios as a means to practice 
the integration of individual skills as they might occur in the real world. For instance, a 
student pilot might be instructed to plan a flight from Wichita, KS to Kansas City, MO.  
The student would perform all the tasks necessary to plan the flight including preflight 
checks, route planning, checking the weather reroute etc. During the flight the student 
would demonstrate individual flight skills including turns, climbs, navigation, and 
communication while executing the scenario. The purpose of this project was to review 
research related to the proposed initiatives and to identify future research needs to 
support the long-term objectives of FITS.  In addition to reviewing pertinent academic 
and government literature, the objectives of FITS were reviewed with representatives of 
the FAA, academic and industry partners.  At present FITS materials provide few details 
regarding important components of the training initiative including decision making, the 
training requirements for advanced avionics technology and its effects on situation 
awareness. Future work should draw on an extensive academic literature and on lessons 
learned from prior industry experience when similar avionics technologies were 
introduced to commercial aviation.  Also, clear distinctions should be made between SBT 
as employed in FITS and SBT used by the military and in commercial aviation.  These 
are very different programs. 
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1. INTRODUCTION 
 
In 2002 the FAA, academic and industry partners established the FAA/Industry Training 
Standards (FITS) program whose purpose is to modernize General Aviation (GA) pilot 
training.   The program was motivated by several factors including GA accident rates, the 
introduction of advanced avionics technology and an anticipated diversification of the 
aviation market place. In 1998 the FAA strategic plan (FAA, 1998) set the goal of 
reducing GA accidents 20% by the year 2007.  This goal was established between the 
FAA and the DOT after an earlier White House Commission on Aviation Safety and 
Security Report (WHCASS, 1997) called on the FAA to reduce fatal commercial aviation 
rates by 80%.  The FAA also recognized the need to modernize training standards for 
pilots who would use new avionics technology including those that integrate the GPS 
(Global Positioning Systems) with the autopilot along with multifunction displays 
capable of depicting flight path, weather, terrain and traffic information (see Figure 1 and 
2). The third cited motivation for the FITS program was an anticipated shift in 
demographics in that a significant percentage of the population would choose to live 
removed from major cities (Wright, 2002).  It is predicted that this population will come 
to rely upon on-demand air taxi services for transportation to and from major urban 
centers thereby averting the travel complications associated with the established air-
carrier hub and spoke systems (Norton, 2004).  It has also been argued that the 
availability of new higher performance personal aircraft with advanced avionics would 
allow more individuals to fly themselves safely to their destinations. (However, see the 
report on SATS (2002; TRB, 2002) for another view of these projected developments.) 
 

 
 

Figure 1: Cockpit of a Cessna 182 equipped with the Garmin G1000. Courtesy of Cessna 
Aircraft Company. 
 
Whether the market for on-demand point-to-point air taxis exists is debatable; however, it 
is clear that the demand for advanced avionics is large and growing.  These and other 
proposed avionics and displays including the “Highway in the Sky” and the “cockpit 
associate” concept are touted as improving safety by enhancing pilot Situational 
Awareness (SA) and reducing pilot workload.    Independent of its potential benefits the 
introduction of new technology has highlighted the need for programs to train and certify 
pilots to use the avionics suites. General aviation OEM’s now offer advanced avionics as 
standard equipment on many aircraft models (e.g., Beechcraft Bonanza’s A36, Cessna 
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182, Cirrus SR22, Diamond DA-40).  The capabilities and functionality afforded a GA 
pilot by the new avionics approaches that of a commercial aircraft operated by two crew 
members.  In the case of commercial, charter and corporate pilots, they must undergo 
recurrent proficiency instrument training in the aircraft they fly at regular intervals 
(Glista, 2003a). No such requirement exists for GA pilots.   
 
The instrumentation places new demands on pilots including changes in the level and 
distribution of pilot workload during a flight, the need to manage and integrate 
information from multiple displays, navigate complex menu structures, and program 
navigation computers.  Unlike older steam-gauge knob and dial systems, the avionics 
supplied by manufacturers such as Chelton, Honeywell, Garmin, and Avidyne do not 
function nor necessarily look alike increasing the possibility for negative transfer of 
learning when transitioning between different avionics packages.  The literature 
describing the FITS program argues that the current structure and content of GA pilot 
training programs will not adequately prepare pilots for the challenges of using these 
technologies (FAA, 2003a; Glista, 2003b; Wright, 2002).   
 
The changes in pilot instruction proposed by FITS represent changes in the content and 
delivery of pilot instruction (SBT, integrated ab initio and instrument rating). The FITS 
curriculum attempts to address these issues by stressing training of risk management 
(RM), situational awareness (SA), aeronautical decision making (ADM) and single pilot 
resource management (SPRM). It also proposes to change pilot instruction to make it 
more relevant to real world flying by employing SBT.  The SBT approach is summarized 
well by the armed services’ mantra “Train the way you fight, fight the way you train.”  
FITS has adapted this mantra for GA pilot training and refers to it as “train the way you 
will fly and fly the way you train”.  FITS proposes to emphasize the use of scenarios as a 
means to practice the integration of individual skills as they might occur in the real world. 
For instance, a student pilot might be instructed to plan a flight from Wichita, KS to 
Kansas City, MO.  The student would then perform all the tasks necessary to plan the 
flight including preflight checks, route planning, checking the weather reroute, etc.  
During the flight the student would then perform the individual flight skills including 
turns, climbs, stall recovery, navigation, and communication while executing the 
scenario.  The instructors’ role is to allow the student pilot to perform the flight tasks 
with a minimum of interference.  This allows the students to practice the skills as they 
would in the real world thus increasing the transfer of learning to real world flying.  
Finally, FITS will also explore the potential of a combined ab initio and instrument rating 
as a means of reducing the time and cost of pilot training. 
 
The academic partners, including Embry-Riddle Aeronautical University and the 
University of North Dakota flight training program are responsible for developing pilot 
training materials that adhere to the approach described above.  A number of pilot 
training materials are currently available at the FITS website 
(http://www.faa.gov/avr/afs/fits/index.cfm) including generic private/instrument, 
recurrent and transition training master syllabi.  In addition to developing generic training 
materials the academic institutions in conjunction with the FAA will review materials 
submitted by aircraft and equipment manufacturers to ensure that they meet FITS criteria.  
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The pilot training programs developed by FITS will not result in new FAA regulations or 
changes in policy.  Rather the FAA will recognize FITS compliant training as an industry 
technical standard.  The advantage of this approach is that it allows a rapid response to 
changes in the aviation industry and does not require the lengthy review necessary to 
establish new regulations.     
 
The purpose of this project was to review research related to the proposed initiatives and 
to identify future research needs to support the long term objectives of FITS.  In addition 
to reviewing pertinent academic and government literature, the objectives of FITS were 
reviewed with representatives of the FAA, academic and industry partners.   

2. ADVANCED AVIONICS 
 
One of the touted benefits of using advanced avionics in GA aircraft is a reduction in 
accidents through improved Situational Awareness (SA) and reduced pilot workload that 
increase the “available safety” (FAA, 2003b). New avionics will provide the pilot with 
near real time weather information (NEXRAD images), traffic avoidance (TCAS), 
Terrain Awareness & Warning Systems (TAWS) and GPS-driven moving map displays 
for navigation. Although more information is often desirable from the pilot’s perspective 
it does not necessarily result in improved decision making (Slovic, 1981) or safety.  This 
is illustrated by a recent analysis of accidents involving Technically Advanced Aircraft 
(TAA) (FAA, 2003b).  The FAA defines TAAs as aircraft having a “minimum of an IFR-
certified GPS navigation system with a moving map display, and an integrated autopilot” 
(FAA, 2003b). The analysis was motivated by accident rates for TAAs that were “not 
substantially lower than the accident rates of comparable newly produced non-TAAs, as 
had been expected” (FAA, 2003b). The findings of the report state that the problems 
identified were typical of previous introductions of advanced avionics technology and 
also reflect common pilot judgment errors.   
 
Although, new technology can reduce or eliminate some classes of errors it can in turn 
introduce new failure error modes or systems failures (Sarter, Woods, & Billings, 1997; 
Wiener, 1988) which require new pilot skills and knowledge.  It also redistributes pilot 
workload from the execution of manual or perceptual-motor acts of flying an airplane to 
higher level cognitive demands associated with supervisory control that involve 
monitoring and integrating information from multiple sources. The human factors 
literature is replete with examples of incidents from the aviation, maritime, industrial, and 
medical fields illustrating the vulnerabilities of automated systems (Casey, 1993). 
Nevertheless, these industries have benefited from increased automation and they have 
accumulated a wealth of experience that could benefit FITS.   
 
We conclude from our review that existing FITS initiatives may not adequately prepare a 
pilot to reap the benefits of the advanced technology.  The following sections identify a 
number of issues that the proposed GA pilot training programs should address by 
documenting the impact of automation on user behavior and highlighting human factors 
issues related to the design of the interface.  
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Figure 2: Cockpit of a Diamond DA40 equipped with an Avidyne Enterga suite. Courtesy 
of Avidyne Corporation. 
 
2.1 Past Introductions of Advanced Avionics 
 
Glass cockpits similar to those being introduced in GA first became available in 
commercial aviation with the introduction of the Boeing 757/767 and Airbus A310/320.  
The transition to glass cockpits can be challenging as pilots have reported that the switch 
to a highly automated aircraft is more difficult than the transition between aircraft with 
conventional avionics (Sarter & Woods, 1997; Sarter et al., 1997).  After a number of 
incidents and accidents, the FAA in 1996 commissioned a study of the interface between 
the flight crew and automated systems on highly automated aircraft.  Although the level 
of automation in commercial aviation and GA differ in terms of degree and 
sophistication, many of the problems associated with automation identified in FAA 
technical reports and in later academic and government technical literature are pertinent 
to GA (Dekker & Hollnagel, 1999; DTRDB, 1998; Sarter et al., 1997). These problems 
include poor pilot understanding of the function and design of automation, automation 
induced complacency, user reports of increased risk taking, degradation of basic 
instrument or other manual flight skills, poor design of the instrument interface, and an 
unfavorable effect on SA.  
 
2.2 Pilot Understanding of Automation 
 
An FAA report (1996) and a survey of commercial pilots conducted by the Australian 
Department of Transport and Regional Development conclude that pilots do not have an 
adequate understanding of aircraft automation.  This conclusion is supported by 
numerous examples of pilots being surprised by the unexpected behavior of the aircraft 
automation. (Sarter et al., 1997) have argued that automation surprises reflect an 
incomplete or incorrect mental model of the system’s design and function.  Through 
interaction with a system a user develops a mental model representing their 
understanding of the system’s operation, its components and interaction among those 
components. The mental model enables the user to predict the operation of the system in 
response to a given input (Norman, 1983). The fidelity of the mental model may be 
critical as it determines the degree to which the pilot can rely on the model to accurately 
predict the systems response to different inputs during emergencies.  
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Pilots’ inaccurate or deficient mental models of automated systems may arise from 
training programs that emphasize operating the system and not how various system 
functions are implemented and interact (Sarter et al., 1997).  Training that relies on the 
rote memorization of system descriptions and function does not facilitate the 
development of an accurate mental model whereas conceptual knowledge or “how-it-
works” training may.  This form of training has been shown to facilitate the learning of 
procedures and results in greater retention than rote memorization (Kieras & Bovair, 
1984).  To date we are not aware of any study that identifies the unique skills and 
knowledge required for a GA pilot to use automation effectively.  Such information 
would be particularly relevant to decisions regarding the content and emphasis of training 
on automated system’s that is to be included in FITS training syllabi.   
 
Sarter, Woods and Billings (1997) have stressed training that supports a users’ active 
exploration of various systems options and interactions among systems instead of 
teaching a standard mental model.  Activities such as “free play” simulator sessions 
(DTRDB, 1998; Sherman, 1997) can promote the development of a more detailed mental 
model of the contingencies and interactions among automated systems which is essential 
if a pilot is to effectively trouble shoot system malfunctions in flight. This view receives 
some support from the survey data collected by (DTRDB, 1998).  Pilots were asked how 
training could be improved during transition training to highly automated aircraft.  Fifty-
eight percent of pilots who addressed automation said they would prefer more simulator 
training with the flight management computer (FMC) trainer. The requests appear to 
reflect a need for more time to further explore system functions and thereby consolidate 
their understanding of the system. Pilot requests for more training time on simulators of 
advanced avionics have been also been reported by Cessna Aircraft for their new aircraft 
equipped with the Garmin G1000 (K. Ortega, personnel communication, August 24, 
2004).       
 
2.3 Pilot Trust and Automation Induced Complacency 
 
Pilot confidence or trust in advanced avionics tends to be high (St. George & Nendick, 
1997) which increases the potential for complacency and the inappropriate use of the 
technology.  Survey data show that many private pilots report occasionally or never 
cross-checking GPS data against other sources (ADF, VOR, DME) and relying almost 
exclusively on GPS instead of maps (St. George & Nendick, 1997).  Data from 
commercial aviation show similar trends (DTRDB, 1998).  The DTRDB survey of 
commercial aviation pilots found that 16% reported they were less likely to refer to 
instrument charts on aircraft with advanced technology and 13% believed all the 
information they needed for the safe conduct of a flight was in the flight management 
system (FMS).  The failure to cross check data from automated systems increases the 
likelihood of pilots failing to detect input errors or system malfunctions. Input errors can 
occur during the programming of aircraft systems. Likewise, the accuracy of GPS 
position information changes as the availability of satellites varies or the signal is masked 
or shielded by terrain or aircraft parts. Complacency or a false sense of security does not 
necessarily represent an absence of motivation or professionalism but may be engendered 
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by user interactions with highly reliable automated systems where failures rarely occur. 
Imploring human operators to monitor and be vigilant for rare events is ineffective given 
the humans poor performance in sustained attention tasks.  
 
2.4 Effects on Situational Awareness (SA) 
 
The data cited above illustrate some of the ways in which enhanced avionics and 
automation can affect SA.  Advanced avionics can also reduce SA because the pilot is 
less involved in the manual control of the aircraft.  Previously, the pilot had to 
continuously monitor and process information about position and various systems 
functions as a basis for future manual control inputs.  With automated systems these 
demands are greatly reduced.  Consequently, the pilot is not required to monitor the 
systems as frequently, or process the information to sufficient depth to detect data input 
errors or system problems.  A pilot of an automated aircraft may have less SA, just as a 
car passenger is likely to have poorer SA than a driver. Automation may give rise to pilot 
feelings of being “along for the ride” (Wiener, 1988).  Rather than a Pilot in Command 
one might refer to this situation as a Passenger in Command (S. Casner, personal 
communication, August 27, 2004).  
 
In the advent of a failure, the pilot will be missing states of knowledge including possibly 
the position of the aircraft relative to terrain or obstacles.  In the DTRDB survey 
(DTRDB, 1998), 14% of respondents reported instances of finding their aircraft 
unexpectedly close to terrain.  This view receives some support from a recent study 
(Casner, 2004a).  Two groups of pilots were instructed to fly a course with a number of 
waypoints. One group of pilots flew the course using standard navigation instrumentation 
and maps as reference and the other group was allowed to program the flight using GPS 
navigation instruments. Upon completing the flight pilots were then asked to repeat the 
flight without the use of maps or the GPS as a reference.  The pilots’ accuracy was 
measured in terms of their distance from each waypoint.  The pilots who initially flew the 
course using a map and standard navigation instruments performed significantly better 
than pilots who used GPS.  
 
This result is not entirely surprising for several reasons.  First, the data cited earlier show 
that pilots using GPS and moving maps displays are not as cognitively involved in the 
navigation of the aircraft, cross checking the scene outside the window with sectional 
charts, and other navigation aids. Second, because terrain information and information 
regarding the aircraft’s course are available on aircraft displays the pilot does not need to 
commit it to memory.  However, should the display fail these two factors would work to 
undermine awareness of spatial position. 
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2.5 Effects on Pilot Risk Taking 
 
The availability of more detailed weather information can increase the likelihood of pilots 
electing to fly in marginal conditions or use the information for other than its intended 
purpose.  For instance, Latorella and Chamberlain (2002; Latorella & Chamberlain, 
2002) reported pilots’ tendency to use a Graphical Weather Information System (GWIS) 
tactically to avoid hazardous weather conditions even though the temporal or spatial 
resolution of the weather information was insufficient for this purpose.  A survey of 
pilots participating in the Capstone project (FAA, 2002a) indicated increased risk taking. 
Under Capstone, 200 Alaskan aircraft were equipped with a multifunction display 
(MFD), GPS and datalink. A survey revealed that 84% of the pilots reported “there would 
be or already is” an increased tendency to fly under lower visibility conditions using the 
displays. Roughly half of the pilots agreed that there was an increased tendency to engage 
in other risky behaviors including flying at lower altitudes under low visibility 
conditions, flying closer to hazardous terrain features, etc. Nendick and St. George (1995; 
1997) reported an increased likelihood of flying in bad or marginal conditions in pilots 
using GPS. This could further increase accidents involving pilots authorized to operate in 
visual meteorological conditions (VMC) flying into instrument meteorological conditions 
(IMC) (O'Hare & Wiegman, 2003) and supports the need for training on decision making 
and risk management in the FITS curriculum.  
 
The preliminary results from the Capstone program appear promising however, it is too 
early to make any conclusive determination whether the variation is attributable to the 
normal variation in accident rates or the new technology (Kirkman, 2002). 
 
2.6 Design of the Automation Interface 
 
Another factor that can contribute to pilot error in automated aircraft is the design of the 
equipment interface.  Both the FAA and Australian reports cited complex, cluttered, 
difficult to read displays, difficult to detect warnings, prompts or mode change (DTRDB, 
1998; FAA, 2003c), the absence of standardization in the look of displays within and 
between manufacturers, as well as the functionality (similar controls that do different 
things) and system messages that are difficult to understand. These issues increase the 
difficulty of using the avionics, learning to use new or different suites, and increase the 
likelihood of negative transfer of learning where the correct response is directed at the 
wrong, but similar, target (control, button, or menu option).   In addition, programming 
navigation instrumentation requires considerable attention increasing pilot head-down 
time at inopportune moments (FAA, 2002a, 2003c) thus decreasing a pilot’s SA.  This 
issue was cited as the predominant safety problem associated with TAAs.  An effort 
spearheaded by the General Aviation Manufacturers Association (GAMA) Cockpit 
Standardization Group is addressing some of these issues. With industry and FAA 
participation, the group is developing standards for display design symbology, and the 
pilot interface (GAMA, 2004).   
 
The training requirements of advanced navigation instrumentation like GPS are likely to 
be greater than for conventional navigation instruments.  Modern avionics require 
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mastery of software interfaces, procedures for programming avionics and navigation of 
menu hierarchies. (FAA, 2003c) investigated the usability of advanced GA cockpit 
navigation displays during simulated instrument flight conditions.   They reported that 
after 2 to 3 hours of training, pilots still made errors and required assistance from 
experimenters to perform certain functions.  A recent study found that pilots did not show 
proficiency in many IFR GPS skills even after ground study and five practice flights 
(Casner, 2004b).  These data provide justification for the approach adopted by Australia 
wherein pilots are required to attend training and be flight tested before receiving an 
endorsement to use a GPS display for IFR conditions (CAAA, 2000). 
 
2.7 Effects of Automation on Pilot Skills 
 
Advanced avionics may have deleterious effects on flying skills as pilots spend 
increasing amounts of time in a supervisory/monitoring role rather than flying the 
aircraft.  Interestingly, a significant number of pilots in an Australian survey (51%) 
agreed that they “preferred to hand fly part of every trip so as to maintain their skills, and 
43% of believed that their flying skills had declined since they had started flying 
advanced technology aircraft (DTRDB, 1998).  This finding is not unique having been 
reported previously by a number of researchers (Sherman, 1997; Wiener, 1988). Similar 
concerns have been expressed by GA pilots (Sclair, 2004) regarding the impact 
automation on basic instrument flight skills.   
 
2.8 Research Questions concerning Pilot Instruction and the Use of Advanced Avionics 
 
Due to the limited time available and cost of training, difficult decisions are required 
concerning what and how much time to spend on various aspects of automation during 
GA pilot training.  For instance, what specific functions and features of the automation 
should training emphasize (FAA, 2002a)? Will instruction include training in the 
management of the information as a function of the phase of flight, including when to 
turn off automation and take control of the aircraft (Wiener, 1988)?  In a related matter, 
will the nomenclature and organization of menus (menu hierarchy, options, etc.) be 
standardized across manufacturers or will each system require a pilot to receive a 
different endorsement?  In the past, aircraft instrumentation looked and functioned 
similarly even if designed by different manufacturers.  This is not the case when one 
compares the avionics provided by manufacturers such as Avidyne and Garmin.  The 
design and organization of the interface, including menu structures, labels, etc., differ 
considerably.  It is also possible that the failure modes and paths will differ, given that 
they reflect different automation philosophies and design.  This is of concern in the case 
of a pilot who rents aircraft with different avionics suites.  Research on mental models 
indicates that users do not necessarily create and maintain device-specific mental models 
(Norman, 1983). Also, the boundaries between mental models and their details can 
become fuzzy when they have not been used regularly.  Recurrency and regular 
proficiency checks may be an important part of training to use advanced avionics. 
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3. SCENARIO- VERSUS PART-TASK TRAINING (PTT)  
 
There are several ideas that appear central to a scenario-based training (SBT) approach: 
1) improving the transfer of training to real world flying by practice that emulates the 
execution of tasks in the real world, and 2) de-emphasis of traditional PTT involving the 
repeated practice of individual skills until proficiency, substituting practice of skills in 
context.  This approach to training is strongly influenced by the constructivist approach to 
education (Cobb, Wood, & Yackel, 1991).   
 
The constructivist approach rejects traditional models of teaching where knowledge is 
disseminated through lecture from a teacher to students who scrupulously write each 
spoken word.  Complex concepts are mastered by learning individual facts or ideas that 
serve as the building blocks for later more advanced principles.  Only later is the 
knowledge applied to the real world.  The constructivist approach attempts to capitalize 
on students’ natural curiosity and enthusiasm by introducing the big concepts and 
advanced ideas first, which create a context for concepts, and information that are the 
basis for advanced principles.  To maximize learning, examples drawn from the real 
world are used in instruction.  This allows the students to learn the concepts and see their 
relationship to larger encompassing idea rather than in isolation and out of context 
through rote memorization.  Instead of lecturing, the instructor serves as a resource to 
students as they explore the problem, identify important concepts, and acquire the basic 
skills needed to address a specific problem. The purported benefit of this approach is 
increased learning by acquiring the facts and skills through experiential learning in a 
natural context.  Applied to pilot instruction, the goal of scenario-based flight training is 
to acquire and refine skills and knowledge in the context of executing a flight to a 
particular destination.  Thus, rather than flying to a practice area and executing 
approaches, turns, climbs, etc. these maneuvers are practiced in the order in which they 
naturally occur during a flight.  This approach to training shares some philosophical 
positions with Situated Learning (Lave, 1988) and in practice is similar to a number of 
training methods including learning by doing (Gagne, 1962) and whole-task training 
(Lintern & Wickens, 1991). 
 
3.1 SBT and the Military 
 
While the origin and history of SBT is beyond the scope of this report, it can be argued 
that the modern concept of SBT emerged from Naval Aviation.  In response to relatively 
low kill ratios of air-to-air engagements achieved in Southeast Asia, the Navy created a 
graduate-level flight school to train Air Combat Maneuvering (ACM) and weapons 
systems employment. The Fighter Weapons Training School used actual aerial combat 
scenarios that pitted students against instructors who used enemy tactics and aircraft 
representative of the adversaries they would encounter during combat.  By the end of the 
Vietnam conflict, naval air combat kill ratios had returned to the level achieved during 
World War II.  The mantra “train like you fight, fight like you train,” has since spread 
throughout the military to include almost every aspect of training for complex systems. 
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SBT soon found its way into commercial aviation.  In 1978, FAR 121 was amended to 
allow airlines to use Line Oriented Flight Training (LOFT) as part of recurrent training.  
LOFT is designed to simulate actual situations that pilots may encounter while “flying 
the line.”  The scenarios are systematic and include any and all actions taken during a 
flight including preflight checklists, weather briefings, and maintenance checks, as well 
as advanced training such as crew resource management and decision-making skills.  
 
The use of SBT has become ubiquitous in military training.  It is also being used in 
training of air traffic controllers, aircraft maintenance mechanics, law enforcement 
officers, and emergency medical first responders (Lai, Entin, Dierks, Raemer, & Robert, 
2004).  Despite the ubiquity of SBT and the vast amount of research pertaining to its 
implementation and use, we have not found empirical research demonstrating that SBT is 
a more effective or efficient means of training.  A study showing improved transfer of 
training, reductions in cost- or improved safety would seem appropriate given the 
changes and investments necessary to implement a successful SBT program.  
 
Currently Middle Tennessee State University is employing FITS-based training as part of 
a larger study to support NASA’s SATS program to investigate the applicability of a 
combined VFR and IFR pilot training program.  Interpretation of the results regarding the 
potential benefits of FITS-based training is difficult however as it not possible to 
determine whether they are attributable to the use the FITS syllabus, employment of a 
TAA aircraft, or potentially the increased motivation of students who have been asked to 
participate in this unique training program (P. Craig, personal communication, June 1, 
2004).  
 
One disadvantage of SBT is that high cognitive workloads can interfere with the initial 
acquisition and the rate of development of individual skills (Nissen & Bullemer, 1987; 
van Merrienboerg, Kirschner, & Kester, 2003).  This fact is reflected in the well-known 
phrase among flight instructors, “the cockpit is a terrible classroom”.  The activity and 
stress levels experienced during flight may offer few opportunities to reflect on one’s 
decisions be they good or bad, thus potentially diminishing learning benefits.  As outlined 
by Schneider (1985), SBT makes a number of assumptions regarding the presumed 
relationship between real-world training and training effectiveness that are suspect. It 
assumes, for instance, that the frequency of events and their order in the real world is 
optimal for learning, and that each scenario presents the opportunity to practice the 
essential components of each task (Schneider, 1985).  “Learning by doing” may be a 
relatively inefficient way to acquire skills that have a significant procedural component: 
examples include communication with air traffic control, instrument flight, etc.  In such 
instances, learning the list of actions to perform may contribute more to effective learning 
of the task than practice of the final task (Gagne, 1962). In addition, students may spend 
valuable time repeating skills that they have already mastered to get an opportunity to 
repeat those components that require further practice (Anderson, Reder, & Simon, 2000).   
 
The benefits of SBT will depend on what skills or abilities one seeks to train. For 
instance, PTT has the advantage of reducing the cognitive demands associated with 
managing multiple tasks and typically results in faster skill development than is observed 
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in whole-task training (Brown & Carr, 1989; Schneider, 1985). However, performing in a 
complex multi-task environment, like flying, requires the development of strategies for 
controlling attention and for coordinating numerous subtasks. The pilot must decide what 
to attend to and how much attention to allocate to each task. They must prioritize the 
tasks and decide how often to monitor specific gauges or instruments. These skills are 
more effectively trained as part of a whole-task than a PPT paradigm (Kramer & Larish, 
1996; Schneider & Fisk, 1982).  Recently, a hybrid training strategy called varied-
priority training has shown promise as an alternative training paradigm (Fabiani et al., 
1989; Gopher, Weil, & Siegel, 1989).  Varied-priority training embeds PTT within 
whole-task training.  Participants are asked to perform multiple tasks but the emphasis 
placed on the different task components is varied across training sessions or blocks.  The 
advantage of this approach is that students learn how to coordinate and manage multiple 
tasks while reducing the processing loads that interfere with the acquisition of individual 
task skills.  To date, the published studies show that varied-priority training is effective in 
training both component and task management skills (Gopher et al., 1989; Kramer, 
Larish, & Strayer, 1995) and may be applicable to more complex aviation training 
environments.  
 
We have not identified any research that directly compared SBT to skill- or part-task 
training curriculums.  The primary advantage of SBT is that the training environment is 
more realistic, more representative of the actual working environment; thus transfer of 
training may be greater.  Although the FITS definition of SBT is very similar to that of 
LOFT training (see definitions below) and cites its use by commercial aviation and the 
military, the training methods described in the FITS literature differ in a number of ways 
from those used by the military and commercial aviation.   
 

(per Guidelines for Line-Oriented Flight Training, NASA Conference Publication 
2184, p. 6,Lauber & Foushee, 1981). 
 
Line-Oriented Flight Training (LOFT): refers to the use of a training simulator 
and a highly structured script or scenario to simulate the total line operational 
environment for the purposes of training flight crews. Such training can include 
initial training, transition training, upgrade training, recurrent training, and special 
training, e.g., route or airport qualification training. The appropriate term should 
appear as a prefix with LOFT, e.g., "Recurrent LOFT," to reflect the specific 
application  
 
(per FITS Master Instructor Syllabus: TAA Scenario Based Instructor Guide 
V1.0, p. 3) 
 
Scenario Based Training (SBT): SBT is training system that uses a highly 
structured script of real-world experiences to address flight-training objectives in 
an operational environment. Such training can include initial training, transition 
training, upgrade training, recurrent training, and special training.  The 
appropriate term should appear with the term “Scenario Based,” e.g., “Scenario 
Based Transition Training,” to reflect specific application  
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The main differences in definition include: 
 

1. Use of simulator  (LOFT) versus real world (FITS) 
 

 Simulation allows the behavior to unfold in such a way that the desired event 
requiring student response, decision is reached. Scenario developers 
emphasize the need to constrain the student’s behavior.  Training in real world 
situations does not allow this level of control. 

 To assure that the decision point is reached with some degree of reliability; 
scenarios should be performed in a simulated rather than real world 
environment. 

 Development of scenarios is an iterative process which involves creation, 
evaluation, revision, reevaluation, etc.  

 
2. Properties of highly structured scripts: 

 
 All LOFT scenarios and flight segments should be designed on the basis of a 

formal and detailed statement of specific objectives and desired end products. 
 Experience with LOFT indicates that scripts should be as detailed as possible 
 Communications should be scripted and utilized verbatim. The pacing and 

timing of the scenario should be precisely specified so that the instructor 
knows exactly when and how to introduce each element of the scenario. 

 Sub-scenarios should be designed in anticipation of crew actions.  The only 
way to know what actions may be taken is to test and evaluate scenarios to 
identify the novel ways in which actors behave. 

 After development, scenarios should be carefully tested; revisions will almost 
always be required. 

 
3. Effective only in context of a total training program: 

 
 It is not a replacement for maneuver oriented flight training or “batting 

practice.” 
 One of the absolute prerequisites of effective cockpit management is a highly 

skilled, highly knowledgeable pilot. 
 LOFT is not a training program, but rather a tool to contribute to the overall 

objectives of a program. (Lauber & Foushee, 1981) 
 
Training programs, both military and civilian that have incorporated SBT into their 
curriculum have undertaken systematic and thorough analyses of the knowledge, skills, 
and procedures required by the domain.  Information gathered from these analyses is used 
to design the scenarios in a manner that insures that the appropriate skills necessary for 
successful completion of the task are trained.  Lai et al. (2004) used a battery of 
knowledge elicitation techniques drawing from a variety of experts (i.e. domain experts, 
psychologists, instructors, etc.) to identify fundamental activities and tasks required of the 
trainees. Researchers developing scenarios for military training have employed a variety 
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of cognitive task analysis methodologies to identify critical training needs (Cannon-
Bowers, Burns, Salas, & Pruitt, 2000; Cohen, Thompson, Adelman, Bresnick, & Shastri, 
2000; Oser, Cannon-Bowers, Dwyer, & Salas, 1997). Researchers have also used detailed 
taxonomy of errors that are used to develop specific tasks within the scenarios (Greitzer, 
Pond, & Jannotta, 2004; Lai et al., 2004). The taxonomy goes beyond the mere 
classification of errors (such as that used in HFACS) to determine the cognitive basis of 
the error.  By understanding the root-cause of the error, specific interventions can be 
designed into the scenario. Typically these various methods are used together as part of 
an iterative process to design and validate the individual scenarios. Our review of the 
training syllabi published on the FITS website give no indication that such analyses were 
used to select scenarios or identify content for training.   
 
The military and commercial SBT use simulation because it allows a high level of control 
to ensure that the trainee confronts specific situations designed to aide in the development 
of certain skills. One of the problems of using time in the airplane to train complex skills 
like decision making is that no two flights are the same. As pointed out by Schneider 
(1985), in the real world, events are not designed to optimize learning.  Consequently, the 
situations one seeks to create may not materialize due to weather, traffic, ATC requests or 
earlier decisions made by the student.   
 
The canned scenarios published on the website are pre-scripted flight plans similar to a 
typical dual cross-country flight.  FITS’ curriculum may be more accurately described as 
structured cross-country flight training (SCFT).  A name change is in order to reduce 
confusion and emphasize what is actually being done. 
 
3.2 Research Questions Concerning Pilot Instruction  
 
The literature describing FITS training provides few details regarding how to develop or 
manage a scenario in a SCFT program, or whether such a training program should be 
employed for all levels of pilot training. Given the literature reviewed above a number of 
important issues need to be addressed including identification of training objectives that 
would benefit most from SCFT, comparisons of SCFT and varied-priority training, and 
details of how to implement SCFT.  The following questions address these and related 
issues. 

 
1. How will scenarios to be selected?  
2. What properties should individual scenarios contain? 
3. What skills and competencies should a pilot have when training shifts to   

scenarios?  
4. Will SCFT be used for ab initio training or will it be used exclusively for 

instrument flight training or transition training? 
5. How will pilot performance be measured? 
6. What type of feedback will the pilot receive and when will s/he receive it? 
7. How will performance deficiencies be addressed: by repetition of the scenario or 

by practice on the specific deficiency? 
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8. How frequently should individual skills be represented in a scenario to ensure   
competency? 

9. What new skills will SCFT require of the flight instructor community? 
10. What guidance materials will be available to aid flight instructors in developing 

and managing SCFT? 
 

4. DECISION MAKING 
 
A comparison of accident rates across different sectors of aviation shows that GA has a 
significantly higher accident rate than both commercial and corporate aviation (NTSB, 
2004).  The technologies being introduced to GA cockpits may reduce GA accident rates 
through the touted benefits of improved SA.  They may positively impact a number of 
leading causes of GA accidents including controlled flight into terrain and weather 
related decision making including ‘VFR into IMC’ (GAO, 2000).  Although, ≈2% of GA 
accidents are weather related, they account for 11% of GA fatalities that occurred 
between 1990 and 1997 (Wiegman & Goh, 2000).   
 
Access to information alone does not represent a sufficient basis for expectations of 
enhanced safety.   Central to the FITS strategy is a general emphasis on higher order 
skills including risk management (RM), situational awareness (SA), aeronautical decision 
making (ADM) and single pilot resource management (SPRM).  This focus is justified 
given the central role that these skills are believed to play in accidents.  An early study by 
Jensen and Benel (1977) found that 51.6% of fatal accidents (between 1970-1974) were 
associated with decision errors. More recently, Weigmann and Shappell (1997) reported 
that decision errors remain a major causal factor in 30% of GA accidents. 
 
4.1 Training in Judgment 
 
Although the accident statistics identify a weakness in pilot decision-making, it is unclear 
why GA pilot training programs fail to teach this skill.  The FAA requires pilot 
instruction in aeronautical decision making but offers minimal guidance to flight 
instructors of how this should be done. To date, most safety-related initiatives addressing 
weather-related accidents have consisted of motivational and experiential based 
approaches (Wiggins & O'Hare, 2003).  However, training programs that identify 
dangerous behaviors (i.e., scud running) and advise individuals of the dangers of such 
behavior have little effect (Halpern, 1998, 2000).  The absence of transferability of 
knowledge to real world settings may result from:  1) content (i.e., emphasis on wrong 
knowledge and/or skills) and 2) pedagogical style (i.e., part-task training versus SBT).  If 
pilot decision-making failures were related to one or both of these factors then the 
primary focus of future research would be to identify the fundamental skills and 
knowledge a pilot should master and the form that instruction should take.   At present, 
the literature does not identify which is the primary culprit in failures of GA decision 
making.    
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The FITS training program assumes that both factors are implicated in accidents and 
emphasizes SCFT, training in risk management, situational awareness, resource 
management, and aeronautical decision making.  Given this emphasis, several issues need 
to be addressed regarding how training in decision making will be performed (other than 
it being scenario-based):  
 

1.  What are the specific critical thinking skills which are not currently taught that 
support good decision making?  

2.  What types of training experiences facilitate development of critical thinking 
skills? 

3.  How can critical thinking skills be evaluated?     
 

The literature on FITS provides no answers to these questions but suggestions may be 
found in the literature related to expert performance and training of critical thinking 
skills.  Some of this literature is discussed below. 
 
4.2 Expert Performance 
 
We often solicit the opinions of “experts” when confronted with difficult problems or 
when seeking confirmation of decisions.  We believe experts possess skills that allow 
them to identify correct, more efficient, or alternative solutions quickly and reliably.  
Studies of experts in other domains, including chess and medicine, have identified a 
number of skills that distinguish experts from novices.  For instance, expert chess players 
were able to consider more options and their potential outcomes (Charness, 1981) than 
novices.  Experts remembered the positions of chess pieces even after a brief exposure 
(Chase & Ericsson, 1982; de Groot, 1978). Randomly positioning the pieces nullified the 
experts advantage.   
 
The experts’ memory advantage appears to be related to their more efficient encoding of 
information in long-term memory (LTM) that circumvents capacity constraints at earlier 
stages (i.e., short-term memory, STM) of information processing (Chase & Ericsson, 
1982).  Avoiding STM capacity limitations enables experts to resume a task after 
interruptions from unrelated activity that would otherwise interfere with the maintenance 
of information in STM (Charness, 1991).  This may be the basis of expert pilots’ ability 
to handle multiple task demands effectively.  Ericsson and Charness (1994) provide 
evidence that experts store and index information in LTM in a qualitatively different 
manner than novices’ allowing experts to readily recognize patterns by comparing the 
present circumstances to exemplars in memory.  This skill could be vital when time-
consuming deliberation of options (i.e., application of critical thinking strategies) is 
impossible and makes performance less susceptible to disruption by stress or other tasks.   
Experienced pilots exhibit similar memory skills that allow them to store flight related 
information without decay (Endsley, 1995).  Interestingly, the improved memory skills of 
experts appear to be domain specific and they do not generalize to other tasks (Ericsson 
& Charness, 1994).   
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Experts’ ability to select only task-relevant information facilitates their management of 
multiple demands. They are more selective about the details they commit to memory. 
Medical experts out perform medical students in identifying and recalling important 
pieces of presented information (Boshuizen & Schmidt, 1982; Chase & Ericsson, 1982), 
whereas medical students could recall more information in general.  Studies of pilots 
corroborate these findings.  Beck (Wiggins & O'Hare, 2003) and Rockwell and McCoy 
(1988) found that experienced pilots were more efficient in acquiring and evaluating 
details of weather-related information.  These and other studies suggest that novices lack 
an understanding of the utility of different cues (Schvaneveldt, Beringer, Lamonica, 
Tucker, & Nance, 2000; Wiggins & O'Hare, 2003). 
 
Finally, experts employ different metacognitive skills in monitoring their own thinking 
process.  They check progress made toward a goal, evaluate accuracy, make decisions 
about the use of time and mental effort, and search prior experience to find instances of 
situations similar to the current one (Cohen et al., 2000; Freeman & Cohen, 1994; 
Halpern, 1998). Experts are able to refine their understanding and knowledge by active 
learning strategies.  Individuals become better thinkers and learners by developing the 
habit of monitoring their understanding and judging the quality of their learning.   
 
4.4 Critical Thinking Skills Training 
 
In light of what we know about the critical thinking skills of experts, the question arises 
whether novices can be taught to behave like experts? If so, can it be shown that the skills 
transfer to real world conditions? A number of studies report successful transfer of 
critical thinking skills to novices (seeHalpern, 1996) and there is evidence that pilots who 
received decision-making training demonstrate better judgment (Buch & Diehl, 1984).  
Recently, the U.S. Army funded research to develop a critical thinking skills training 
program for battle field decision-making (Cohen et al., 2000).  A theory of the cognitive 
skills necessary to make decisions on the battlefield was developed, as were training 
materials and methods for delivering the training on a CD or via the World Wide Web.  
The training was later utilized and found to be effective by the U.S. Army.  Cohen et al. 
(2000) identified several essential features of critical thinking training, including: 1) 
explicit instruction and practice, 2) prior instruction on concepts and processing strategies 
to facilitate learning, 3) realistic, non-routine situations that are more challenging than an 
individual would likely face and 4) feedback focused on appropriate processes rather than 
correct responses. The components of critical thinking skills training proposed by Cohen 
et al (2000) are similar to those outlined by Halpern (1998). 
 
Critical thinking skills training can be supplemented by instruction emphasizing rapid 
recognition and response to emergencies.  This reduces the load on short term memory 
(STM) during an emergency and is expected to make pilot performance more resistant to 
the effects of stress.  Klein (1998) has stressed that this ability—the ability to rapidly 
recognize cues and identify the current situation as an example of a prototype—is what 
distinguishes experts from non-experts. These skills be particularly The object of the 
recognition training is to enhance the ability of an individual to rapidly and 
automatically select the appropriate response to a diverse set of situations by exposing 
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the trainee to a large number of trials, some with time constraints (Stokes, 1991). 
Training scenarios may be drawn from accident reports and other frequently mishandled 
situations. Little or no instruction in formal decision making may be provided and 
feedback may be limited to the correctness of the response (Stokes, 1991).   
 
The training approach described above can be contrasted with a normative approach (Von 
Neumann & Morgenstern, 1953), which describes how an individual “should” choose 
between two alternatives under ideal conditions given the utility, or worth of a specific 
outcome to the decision maker. Training content includes logic and decision theory, 
calculations of probabilities of different alternatives and their utility when outcomes are 
uncertain. Training in normative decision-making may not be particularly useful in 
emergency conditions where responses must be immediate, alternatives and their 
probabilities are unknown and the operators’ capacity to entertain different options is 
compromised by stress, the capacity of STM, and the demands of other tasks.  However, 
methods are needed that are not too cumbersome that would aid pilots in more 
systematically identifying and weighing risk.  These methods could be employed before a 
flight or during a flight as conditions deteriorate.  
 
It is important to acknowledge potential limitations of relying on expert reasoning 
processes as a basis for modeling the behavior of novices.  Experts are not infallible and 
often fall short of optimal performance (Shanteau, 1992).  Individuals may rely on 
intuition and gut feelings to make important decisions, or they may resort to heuristics to 
reduce the mental workload associated with complex reasoning tasks (Dhami, 2003; 
Tversky & Kahneman, 1973, 1974).  Consequently, it is important that the utility of the 
cues and strategies reported by experts be independently confirmed. In many situations, 
these heuristics will result in correct decisions, especially when the decision maker is 
knowledgeable about the domain.  However, heuristics often fail when applied to new 
problems or domains.   
 
Finally, relying on experts requires that one identify and capture the performance of 
experts by selecting a criterion for distinguishing between novice and experts that is not 
arbitrary and that captures the essential features of expert performance in the area of 
interest (i.e., weather decision-making) (Ericsson & Charness, 1994).  In aviation, novice 
and expert pilots are typically distinguished on the basis of flight hours or type ratings.  
These criteria are essentially arbitrary and do not account for the varied types of 
experiences that are presumably the basis of expertise.  
 
4.5 Research Questions Concerning Pilot Instruction and Training on Decision Making 
 
Although studies have demonstrated that novices can acquire some of the sophisticated 
cognitive abilities and skills of experts, to date no one has developed training strategies 
that support the rapid development of these abilities (Ericsson & Charness, 1994).  
Typically, extended practice (>50 hours) is necessary to approach performance levels 
comparable to that of experts in restricted domains.  Achieving the level of competency 
of experts may take years of experience. In light of this, what should be the goal of 
decision-making training for a pilot completing ab initio training?  Bell and Mauro 
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(1999) propose a training strategy that “accelerates the transition from novice to expert 
with modeling and efficient learning experiences and direct teaching of support structures 
(e.g., critical thinking skills) while teaching rules to keep the novice safe.” Modeling in 
this context refers to learning decision making by observing the behavior of more 
experienced pilots or through demonstration.   
 
Any proposed method of decision-making training should satisfy several criteria in order 
to have a chance of being adopted by the flight instructor community:  
 

1) Instruction should not increase the length of pilot training and thereby the cost 
to the student. 

2) Teaching the relevant subject matter should not require additional skills of 
Part 61 and 141 flight instructors. 

3) Proficiency in decision-making should be measurable.  
4) The cost of training materials to the instructor and student should be minimal. 
5) Transferability of skills to real world should be demonstrable. 

 

5. STANDARD VERSUS COMBINED PRIVATE AND INSTRUMENT RATING  
 
A combined curriculum was originally developed under the Advanced General Aviation 
Transport Experiments program (AGATE,2001) with the stated goal of reducing training 
time and cost by 25%.  An evaluation of this combined curriculum was attempted but it 
was largely unsuccessful due to a number of unforeseen problems out of the 
experimenters’ control. Consequently, only 8 of the 81 students who originally agreed to 
participate in the evaluation completed the flight training program. Summary data from 
the report showed that the students in the combined curriculum required 45% fewer trials 
to meet Practical Test Standards (PTS) for maneuvers tested in the study but required 20 
more hours than those in the standard flight training group to pass the final check ride. 
No meaningful conclusions can be drawn from this data given that six students completed 
the standard flight training program and only two completed the combined training 
program. Nevertheless, the AGATE report (AGATE, 1999) concludes that the combined 
training program “represents a very significant reduction in the amount of training 
required” (italicized in the original document).  
 
Interest in combining initial pilot training and instrument flight training is not new.  A 
number of earlier studies (Creelman, 1955a, 1955b, 1955c, 1956; University of Illinois 
Institute of Aviation, 1956); (Jolley, 1958) conducted by military and civilian 
organizations have evaluated integrated training programs.  Perhaps most pertinent is a 
report by the University of Illinois Institute of Aviation where they sought to train private 
pilots within an allotted 40 hours who could pass the private pilots license exam and 
demonstrate an “appreciable” ability to fly on instruments.  All 18 students involved in 
the study successfully completed the program.     
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6. USE OF PERSONAL COMPUTER-BASED AVIATION TRAINING DEVICES 
(PCATD) 
 
PCATDs may provide an alternative means of reducing pilot training costs and of 
training higher-order pilot skills. The findings of FAA-funded research (Taylor et al., 
2003) indicate that practice on a PCATD is at least as effective as practice in an airplane 
or in a Flight Training Device (FTD) in meeting FAA recency of experience 
requirements for instrument flight. PCATDs are a combination of software and hardware 
packages for a standard home personal computer that emulate an airplane cockpit and 
controls (FAA, 2002b).  FTDs emulate a specific cockpit environment and typically have 
a higher level of fidelity than PCATDs.  However, FTDs are more expensive, costing as 
much as $30,000, while a PCATD costs $5,000 or less.  In addition to being more 
affordable to flight schools and individual instructors, PCATDs are also less costly to 
maintain.   
 
Current FAA regulations (advisory circular 61-126) specify certification requirements for 
PCATDs along with the standards for which a PCATD can be used in lieu of actual 
flight. For Part 61 schools, 20 hours of FTD or flight simulator time can be used in place 
of actual flight time. Of those 20 hours, 10 can be accrued on PCATDs. For Part 141 
schools, up to 15 hours of can be simulated. Of those 15 hours, 10 can be accrued on 
PCATDs.  The PCATDs appear to hold promise as a tool for improving training 
effectiveness and efficiency while controlling time and costs.  
 
Research has shown that PCATDs are effective training tools for a number of skills 
including teaching new pilots instrument tasks (Taylor et al., 1999) and some aircraft 
maneuvers (Ortiz, 1994). There is evidence that training costs may be reduced even after 
the time on PCTAD is taken into account (Ortiz, 1994; Taylor et al., 1999).  Ortiz (1994) 
trained college students with no previous flying skills to perform a simple maneuver, 
either in a PCATD or in an airplane.  The PCATD did not decrease the total time of 
training; however a cost benefit analysis showed that using a PCATD would save the 
pilot money by eliminating actual flight time. Taylor and colleagues (1999) investigated 
transfer of training and found that most of the benefits of training on a PCTAD are 
obtained in the early stages, with little transfer of training benefit when reviewing already 
learned tasks, unless some time has passed since the task was last performed. PCATDs 
have also been shown to be useful in maintaining instrument proficiency (Talleur et al., 
2001). The PCTAD may be effective in maintaining proficiency in skills that are more 
discrete (i.e., procedural), and which degrade more over time if unpracticed 
(Mengelkoch, Adams, & Gainer, 1958).  This could be important in modern avionics 
suites that require the user to navigate menu structures and program the navigation 
computer. (FAA, 2003c) found that 50% of the pilots in their study required assistance in 
programming a GPS system. Although the pilots in their study had varying degrees of 
familiarly with the system, this finding is important because pilots may forget the 
complex programming procedures for their avionics if they fly infrequently. 
 
Interestingly, most PCATD studies (Koonce & Bramble Jr., 1998; Talleur, Taylor, Jr., 
Rantanen, & Bradshaw, 2003; Taylor et al., 1999) report that positive transfer of training 
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effects are obtained for instrument maneuvers that entail procedural components (Smode, 
Hall, & Meyer, 1966), and less transfer for flight tasks that are more perceptual-motor in 
nature. A GAO (1999) report on PCATDs cites comments by experts (Talleur et al., 
2001) that “the main value of PCATDs is in teaching procedures and concepts, rather 
than the complete set of skills needed to fly.” A similar finding was reported for PCTAD 
training on rotary aircraft (Johnson & Stewart, 1999). This suggests that PCATDs are less 
effective in training of the “Physical Airplane” or the “stick and rudder” aspect of flying 
a plane (Dennis & Harris, 1998).  This is reflected in the way PCATDs are being 
employed by flight training schools. A survey by (Wiggins, Hampton, Morin, Larssen, & 
Tronscoso, 2002) found that PCATDs were primarily used for private pilot and 
instrument training with a focus on procedural knowledge.  
 
To date, studies of PCATDs clearly demonstrate flight training benefits, and there is 
limited evidence that they will also reduce the cost of training.  The PCATD can help 
maintain procedural skills and may also prove effective in training higher-level skills 
such as decision making. A number of recent studies suggest that PC scenario based 
training can be effective in improving decision making skills of first responders (EMS) 
(Lai et al., 2004), security personnel (Greitzer et al., 2004), and army infantry (Cohen et 
al., 2000).  
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7. CURRENT STATUS OF THE FITS PROGRAM 
 
The FITS program proposes to modernize GA pilot training by adopting a system safety 
approach and emphasizing the use of technology, training in risk management, and 
emphasizing SCFT.  Given this review of the pertinent literature we believe that much 
work needs to be done to provide the details of the specific training programs that would 
justify this initiative.  For instance, FITS related publications provide little guidance on 
training issues related to advanced avionics or how to specifically improve higher-order 
cognitive skills related to aeronautical decision making, risk management, situational 
awareness, and single pilot resource management. An assumption underlying much of 
FITS is that “scenario-based training” will improve pilot decision making without 
identifying the specific knowledge or cognitive skills that are to be trained. Also, the 
flight instructor is provided few tools to adequately discriminate between good and bad 
skill performance. 
 
To date we have found little evidence that the published FITS training syllabi heed past 
lessons learned or were influenced in any large measure by pertinent research findings 
from decision-making, training, human factors and automation literature.  It is hoped that 
these issues will be addressed in the near future.  Nevertheless, the training syllabi are 
available and are being used by a number of aircraft manufacturers.  Although, the FITS 
approach was to be employed in all of GA flight training it is currently limited to training 
pilots transitioning to TAAs.  
 
The extant research literature does provide guidance to the developers of the FITS 
training program on many issues; however, there exist a number of significant gaps in our 
knowledge related to the effectiveness of different types of training, critical thinking 
skills training, training objectives for advanced avionics, effects of automation on pilot 
skills, and the potential benefits of PCATDS for pilot training. To aid this endeavor we 
have outlined five research requirements (listed below) pertaining to each of these areas 
for future FAA research funding.  A more detailed description of each research 
requirement can be found in Appendix A. 
 

Comparison of structured cross-country flight training (SCFT) and standard flight 
training: 

a. Does SCFT and standard flight training result in comparable levels of 
proficiency? 

b. What skills are best acquired via SCFT vs part task training (PTT)? 
c. When in pilot training should training shift from PTT to SCFT? 
d. Is a hybrid training strategy (i.e., varied-priority training) a viable 

alternative to PTT and SCFT? 
 

Development of critical thinking skills training for general aviation  
a. What are the fundamental skills of effective decision making, risk 

management, resource management and situational awareness? 
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b. What should be the goals of critical thinking skills training for 
different levels of pilot skill including ab initio and instrument license? 

c. How do you increase the transferability of the skills to real world 
conditions where decisions are made under stress and time pressures? 

d. What is the impact of advanced on avionics on pilot decision making? 
 

Identification of learning objectives for aircraft equipped with advanced avionics 
a. What are the skills and knowledge associated with using steam gauge 

versus glass cockpits and how do they differ? 
b. How do the task demands associated with each differ as a function of 

phase of flight? 
c. What core knowledge should a pilot of glass cockpit demonstrate? 

 
Understanding the effect of automation on piloting skills 

a. How does the use of automation affect a GA pilot’s manual flight 
skills? 

b. How is pilot competency in programming advanced avionics affected 
by layoffs of different duration? 

c. Does training in automation philosophy improve the use of 
automation? 

d. What is the potential for positive or negative transfer of learning 
between advanced avionics developed by different manufacturers? 

 
Use of PCATDs in pilot training 

a. What pilot decision making skills and knowledge can be effectively 
taught using PCATDs? 

b. Does a PCATD reduce of the time and cost of pilot training? 
 
Finally, noticeably absent from the FITS program literature is a statement of a target goal 
either in terms of reduced GA accidents or increased training effectiveness as measured 
by time, cost or proficiency.  The absence of specific targets or performance goals will 
make evaluation of the success or failure of the FITS program difficult to ascertain.
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9. APPENDIX A 
 
Comparison of Traditional Flight Training Program to that of a Structured Cross-country 
Flight Training Program 
 
Sponsor: XXXX      Sponsor POC: XXXX 
 
Requirement Statement:  This study will compare the traditional flight training program 
to that of a structured cross-country flight training program, as described by 
FAA/Industry Training Standards (FITS). 
 
Background:  The FAA Industry Training Standards (FITS) program suggests that 
traditional skill-based curriculums are no longer adequate for pilot training given the 
emergence of Technically Advanced Aircraft (TAA).  The advent of TAA with advanced 
avionics suites place new demands on pilots, which are not addressed by current training 
curricula.  FITS intends to implement SCFT in an effort to address these needs. 
 
The proposal to shift pilot training to SCFT requires evidence demonstrate equal or 
greater pilot proficiency.  To date no such evidence exists.  Recently, a hybrid training 
strategy called varied-priority training has shown promise as an alternative training 
paradigm. Varied-priority training embeds PTT within whole-task training.  Participants 
are asked to perform multiple tasks but the emphasis placed on the different task 
components is varied across training sessions or blocks.  The advantage of this approach 
is that students learn how to coordinate and manage multiple tasks while reducing the 
processing loads that interfere with the acquisition of individual task skills. Published 
studies show that varied-priority training is effective in training both component and task 
management skills and may be applicable to more complex aviation training 
environments. Currently, there is no published research that directly compares a SCFT 
program to traditional part-task or varied-priority training programs.  More specifically, 
given the cost-sensitive nature of general aviation pilot training, it is important to identify 
the effectiveness of a SCFT program as compared to traditional flight training or a 
varied-priority training program? 
 
Output:  A comparison of the effectiveness of a traditional part-task flight training 
program to SCFT and the hybrid varied-priority training.  Analysis should include a 
comparison of average training time (including ground and flight instruction), training 
costs, and pilot performance on standardized FAA exams (written, oral, and flight). 
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Development of Critical Thinking Skills Training Program for General Aviation  
 
Sponsor: XXXX      Sponsor POC: XXXX 
 
Requirement Statement:  The goal of this project is to improve GA pilot training by 
identifying the critical thinking skills to support effective decision making and develop a 
program to train and evaluate those skills. 
 
Background: Accident statistics identify a weakness in pilot decision making but it is 
unclear why GA pilot training programs fail in instructing these skills.  To date most 
safety-related initiatives have consisted of motivational and experiential based 
approaches; however, training programs that identify dangerous behaviors (i.e., scud 
running) and that advise individuals of against such actions are not very effective.     
 
New avionics technologies are supposed to improve pilot situational awareness and 
enable better decision making.   However, the new information sources may bias decision 
making in unexpected ways.  For example, research has identified a tendency among 
pilots to use a Graphical Weather Information System (GWISs) tactically to avoid 
hazardous weather conditions even though the temporal or spatial resolution of the 
weather information was insufficient for this purpose.  Evidence of increased risk taking 
has been reported by pilots interviewed as part of the Capstone project. Under Capstone, 
200 Alaskan aircraft were equipped with a multifunction display (MFP), GPS and 
datalink. Pilot self-reports revealed that 84% of the participating pilots reported that 
“there would be or already is” an increased tendency to fly under lower visibility 
conditions using the displays. Roughly half of the pilots agreed that there was an 
increased tendency to engage in other risky behaviors including flying at lower altitudes 
under low visibility conditions, fly closer to hazardous terrain features, etc. New pilot 
training curriculums being developed under the FITS program will attempt to address 
these issues by focusing on the training of risk management, information management, 
and aeronautical decision making.  At present it is unclear how training in decision 
making and other critical thinking skills should be implemented. More specifically, what 
judgment or metacognitive skills should be the focus of training and how can the 
effectiveness of such training could be evaluated.    
 
Output: A report that describes the rationale, development, and evaluation of a program 
to train critical decision-making skills. Recommendations should include how such 
training could be integrated within constraints of existing GA pilot training programs 
including ab initio, instrument and recurrency training. 
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Identification of Learning Objectives for Aircraft Equipped with Advanced Avionics 
 
Sponsor: XXXX      Sponsor POC: XXXX 
 
Requirement Statement: Identification of the unique knowledge and skills needed to 
operate a GA aircraft with advanced avionics  
 
Background: The FITS (FAA/Industry Training Standards) proposes to modernize 
aviation pilot training while also improving training effectiveness and safety.  The FITS 
training program will first target new and experienced pilots who are transitioning to 
technically advanced aircraft (TAA) and who use the aircraft for transportation rather 
than recreation.  TAA like the Diamond DA-40 come equipped with integrated 
multifunction displays capable of displaying a variety of new information sources (GPS, 
near real time weather information, terrain maps) in addition to standard aircraft 
instruments. It is believed that this information will improve pilot situational awareness 
and thereby reduce accident rates.   These developments will require the creation of new 
pilot training programs for initial, transition and recurrent training. The new training 
programs developed by FITS will emphasize single pilot resource management as the 
pilot of newer aircraft must monitor, select and integrate information from multiple 
displays.  
 
A pilot of these aircraft will need to manage more information sources that can increase 
work loads during critical phases of flight or during emergency situations.  The 
availability of more information sources will require training in the management and 
prioritization during different phases of flight. Researchers have identified a number of 
important issues related to pilot training and use of advanced avionics.  These issues 
include problems with mode awareness, poor pilot understanding of the design and 
operation of the automation, new error paths, degradation of basic instrument skills and 
other manual flying skills, tendency for pilots to continue to program their selves out of 
trouble rather than turning off automation and taking control.  There is also some 
evidence that situational awareness may be diminished under some circumstances in 
aircraft with advanced avionics.  These findings suggest that operating an aircraft with 
advanced avionics may require a different subset of skills than flying an aircraft equipped 
with steam gauges.   
 
Output: The research report identifying the relevant skills and knowledge needed to 
operate a highly automated aircraft, an evaluation of the impact of advanced avionics on 
situational awareness, manual and instrument flight skills, and recommendations 
regarding proficiency requirements for use of advanced avionics.  
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Understanding the Effect of Automation on Piloting Skills 

 
Sponsor: XXXX      Sponsor POC: XXXX 
 
Research Statement: This study will investigate 1) the impact of automation on pilots’ 
manual flight skills 2) how pilot competency in programming advanced avionics is 
affected by layoffs of different durations and the potential for positive or negative 
transfer of learning between advanced avionics developed by different manufacturers.   
 
Bacground: Glass cockpits similar to those currently being introduced in GA first 
became widely available in commercial aviation with the introduction of the Boeing 
757/767 and Airbus A310/320.  The transition to glass cockpits can be challenging as 
pilots have reported that the switch to a highly automated aircraft is more difficult than 
the transition between aircraft with conventional avionics Although the level of 
automation in commercial aviation and GA differ in terms of degree and sophistication 
many of the problems associated with automation identified in FAA technical reports and 
in academic and government technical literature are pertinent to GA. These problems 
include degradation of basic instrument or other manual flight skills, potential for 
negative transfer of learning between different avionics suites produced by different 
manufactures, and declines in pilot programming of avionics following periods of low 
flying activity.  Understanding the impact of automation information is important for 
providing guidance to the FAA and pilots regarding potential problems in use of 
automation. 
 
Output:  A report that describes 1) the impact of automation on pilot manual flight and 
instrument skills, 2) the effects of periods of low flying activity on pilot recall of 
programming procedures and use of automation, and 3) negative or positive transfer of 
learning resulting from the use advanced avionic developed by different manufacturers.  
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Development and evaluation of Personal Computer-based Aviation Training Devices 
(PCATDs) for Training in Decision Making. 
 
Sponsor: XXXX      Sponsor POC: XXXX 
 
Requirement Statement:  This study will compare the effectiveness of PCATDs in 
training situational awareness, aeronautical decision making, risk management, and 
single pilot resource management. 
 
Background:  FAA funded research has shown that practice on a PCATD is at least as 
effective as practice in an airplane a Flight Training Device (FTD) in meeting FAA 
recency of experience requirements for instrument flight. The PCATDs also appear to 
hold promise as a tool for training decision making for ab initio pilots. 
 
Research has shown that PCATDs are effective training tools for a number of skills 
including teaching new pilots’ instrument tasks and some aircraft maneuvers.  There is 
some evidence that training costs may be reduced even after the time on PCTAD is taken 
into account. An investigation of transfer of training showed that most of the benefits of 
training on a PCTAD are obtained in the early stages of training and that there is little 
benefit (in terms of reduced transfer of training) when reviewing already learned tasks 
unless some time has passed since the task was last performed. PCATDs have also been 
shown to be a useful tool in maintaining instrument proficiency.  
 
Output:  1) Development of a PC/Web based pilot decision making training program 
and, 2) An evaluation of the effectiveness of such training. 
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